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Abstract. This paper is a tutorial on uniform relativization. The usual
relativization considers computation using an oracle, and the computa-
tion may not work for other oracles, which is similar to Turing reduc-
tion. The uniform relativization also considers computation using oracles,
however, the computation should work for all oracles, which is similar
to truth-table reduction. The distinction between these relativizations
is important when we relativize randomness notions in algorithmic ran-
domness, especially Schnorr randomness. For Martin-Löf randomness, its
usual relativization and uniform relativization are the same so we do not
need to care about this uniform relativization.
We focus on two specific examples of uniform relativization: van Lambal-
gen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr
randomness with the uniform relativization, but not with the usual rel-
ativization. Schnorr triviality is equivalent to lowness for Schnorr ran-
domness with the uniform relativization, but not with the usual rela-
tivization. We also discuss some related known results.

Keywords: uniform relativization · Schnorr randomness · van Lam-
balgen’s theorem · lowness

1 Introduction

1.1 Relativization

In computability theory, many notions are relativized via oracle Turing machines.
As an example, a set A ⊆ N is called computable if it is computable by a Turing
machine. An oracle Turing machine is a Turing machine with an oracle tape,
which is a one-way infinite tape. If one uses B ⊆ N as an oracle, the oracle Turing
machine can ask whether k ∈ B during the computation. If A is computable by
a Turing machine with an oracle B, then we say that A is Turing reducible to
B or that A is computable relative to B. Similarly, many notions, results, and
proofs can be relativized.

There are some other reducibilities. One of them is truth-table reducibility
or abbreviated by tt-reducibility. If A is Turing reducible to B, then there exists
an oracle Turing machine such that it computes A with the oracle B, but this
machine may be undefined for an oracle other than B. If the reduction is total
and defines a set for every oracle, then the reduction is called tt-reduction, and
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we say that A is tt-reducible to B. Some researchers say that A is tt-computable
relative to B.

Uniform relativization is, roughly speaking, this tt-version of relativization.
To distinguish them, we sometimes call Turing-reducibility version of relativiza-
tion Turing relativization. Even if a notion is a tt-version of relativization of a
known notion, the notion can be described using the terminology of tt-reduction
in many cases. However, when relativizing a randomness notion, it is not appro-
priate to describe it via the reductions. We admitted that there are some types
of relativization and named it the tt-version uniform relativization.

Uniform relativization of computable sets with an oracle B is nothing but
the sets tt-reducible to B. In a more general setting, uniform relativization of a
notion with an oracle B is defined by a total operator from oracles to the sets
describing the notions and it is no longer a tt-reduction. We require uniformity
for the operator, and that is the reason we call it uniform relativization.

Uniform relativization of Schnorr randomness behaves more naturally than
Turing relativization of Schnorr randomness. This is where we found this rela-
tivization.

1.2 Algorithmic randomness

Randomness is a central notion in natural science. The theory of algorithmic
randomness defines many randomness notions and studies their properties. For
simplicity, from now on, the underlying space is the Cantor space 2ω with the
uniform measure µ on it.

Martin-Löf randomness (or ML-randomness) is the most studied notion and
a subclass of 2ω. An interesting result was shown for ML-randomness by van
Lambalgen [16]: X⊕Y is ML-random if and only if X is ML-random and Y is ML-
random Turing relative to X. Here, X,Y are infinite binary sequences and X⊕Y
is the sequence alternating between X and Y . Intuitively, if a sequence is random,
then the odd-numbered parts should be random, and the even-numbered parts
should be random relative to the odd parts, and vice versa. This property should
hold for every natural randomness notion and its suitable relativization.

For a randomness notion R ⊆ 2ω, consider a relativized version RA ⊆ 2ω

with an oracle A. If van Lambalgen’s theorem holds for this notion, then

X ⊕ Y ∈ R ⇐⇒ X ∈ R and Y ∈ RX .

Fix R, then the suitable relativization RX is automatically determined for every
X ∈ R. Hence, van Lambalgen’s theorem can be used as a criterion of a natural
relativization for a natural randomness notion.

Schnorr randomness is another natural randomness notion. This notion comes
up naturally in computable measure theory. It turns out that van Lambalgen’s
theorem holds for Schnorr randomness with the uniform relativization, but not
for Schnorr randomness with Turing relativization. This fact has many appli-
cations, and uniform relativization is a powerful tool in the study of Schnorr
randomness.
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Notice that Turing relativization is used in van Lambalgen’s theorem for
ML-randomness. For ML-randomness, its Turing relativization and uniform rel-
ativization are the same. Hence, uniform relativization of ML-randomness is not
a new notion.

Another result relating to relativized randomness is lowness. A central re-
sult on this topic is the equivalence between lowness for ML-randomness and
K-triviality. When giving a Schnorr-randomness version, we need uniform rela-
tivization of Schnorr randomness. This fact is another evidence that uniformly
relativized Schnorr randomness is a fundamental notion.

In Section 2 we review some basic definitions and results. In Section 3 we
introduce uniform relativization and give some related results. In Section 4 we
gather some results relating to uniform lowness.

2 Preliminaries

2.1 Reduction

We follow standard notations in computability theory. For details, see e.g. [30,
4].

We identify a set A ⊆ N of natural numbers with a binary sequence A ∈
2ω = {0, 1}ω by n ∈ A ⇐⇒ A(n) = 1 for all n. Let (Φe)e∈N be a computable
enumeration of all oracle Turing machines. The machine Φ can be seen as an
operator with a partial domain from 2ω to 2ω as follows: For sets A,B ∈ N,
B = ΦA is defined by ΦA(n) = B(n) for every n. This Φ is called a Turing
reduction. If this operator is total, then Φ is called a tt-reduction.

For sets A,B ∈ N, A is Turing reducible to B, denoted by A ≤T B, if there is
a Turing reduction Φ such that A = ΦB . The set A is tt-reducible to B, denoted
by A ≤tt B, if there is a tt-reduction Φ such that A = ΦB .

For a computable set B, we have A ≤T B if and only if A ≤tt B if and only
if A is computable. If A ≤tt B, then clearly A ≤T B. The converse does not
hold. 1

2.2 Randomness notions

We also follow standard notations in the theory of algorithmic randomness. For
details, see e.g. [9, 25].

Cantor space 2ω is the set of all infinite binary sequences equipped with the
topology generated by the cylinder sets [σ] = {X ∈ 2ω : σ ≺ X} where σ ∈ 2<ω

is a finite binary sequence, and ≺ is the prefix relation. Let µ be the uniform
measure on 2ω defined by µ([σ]) = 2−|σ| for every σ ∈ 2<ω.

A real x ∈ R is computable if there exists a computable sequence (qn)n of
rationals such that |x−qn| ≤ 2−n for all n. A real x ∈ R is lower semicomputable
if there exists an increasing computable sequence (qn)n of rationals such that
1 Every noncomputable c.e. Turing degree contains a hypersimple set [26, Proposition

III.3.13] while a hypersimple set is not tt-complete [26, Theorem III.3.10].
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x = limn→∞ qn. Every computable real is lower semicomputable, but there is a
lower semicomputable real that is not computable.

An open set U ⊆ 2ω is c.e. if there exists a computable sequence S of finite
binary strings such that U =

⋃
σ∈S [σ]. Notice that the measure of a c.e. open

set is lower semicomputable, but not computable in general.
A ML-test is a uniform sequence (Un)n of c.e. open sets such that µ(Un) ≤

2−n for all n. A set X ∈ 2ω is ML-random if it passes each ML-test, that is,
X 6∈

⋂
n Un for every ML-test (Un)n. A Schnorr test is a ML-test (Un)n such

that µ(Un) is uniformly computable. A set X is Schnorr random if it passes each
Schnorr test.

2.3 Computable analysis

To formalize uniform relativization of randomness notions, we use the terminol-
ogy of computable analysis. For more details, see [32, 2].

Let X be a set. A representation of X is a surjective function δ :⊆ ωω → X.
For the real line, we usually consider the Cauchy representation ρC :⊆ ωω → R
defined by

ρC(p1, p2, · · ·) = x ⇐⇒ lim
n→∞

νQ(pn) = x and (∀i < j)|νQ(pi)− νQ(pj)| ≤ 2−i

where νQ :⊆ ω → Q is a computable notation of Q. For the class O of all open
sets on 2ω, we usually consider the inner representation θ :⊆ ωω → O defined
by

θ(p1, p2, · · ·) =
⋃
n

ν(pn)

where ν is a computable notation of the cylinder sets. For 2ω, we use the identity
Id :⊆ ωω → 2ω as a representation.

Let X be a set with a representation δ. If δ(p) = x ∈ X for p ∈ ωω, then p is
called a δ-name of x. An element x ∈ X is δ-computable if it has a computable
δ-name. Then, x ∈ R is computable if and only if it is ρC-computable. An open
set U is c.e. if and only if it is θ-computable.

For sets X1, X2 with representations δ1, δ2, a function f :⊆ X1 → X2 is
(δ1, δ2)-computable if there is a computable function g :⊆ ωω → ωω such that
f ◦δ1(p) = δ2 ◦g(p) for every p ∈ dom(δ1). Roughly speaking, given any δ1-name
p of x ∈ X1, the function g computes a δ2-name q of f(x).

3 Uniform relativization

The goal of this section is to define uniform relativization of Schnorr randomness.
As a warm-up, let us begin by defining uniform relativization of more basic
objects.
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3.1 Uniform relativization of c.e. sets

We do not try to define uniform relativization itself. Instead, we define uniform
relativization of some notions.

A set A ∈ 2ω is computable uniformly relative to B if there exists a tt-
reduction Φ such that A = ΦB or equivalently A ≤tt B. The reduction can
use B as an oracle, but should be total. This roughly means that the reduction
cannot use a special property of B because the reduction should work for all
oracles.

A set A ⊆ N is c.e. if there exists a Turing machine Φ :⊆ ω → ω such
that A = dom(Φ). The machine Φ can be seen as an operator. A set A ⊆ N
is c.e. relative to B if there exists an oracle Turing machine Φ :⊆ ω → ω such
that A = dom(ΦB). While the notion of tt-reduction requires the oracle Turing
machine to be total, it is not the case in the relativization of c.e. sets: every
oracle Turing machine sends each oracle Y to a set that is c.e. relative to Y , so
every oracle Turing machine is defined everywhere in that sense. Thus, Turing
relativization of c.e. sets is the same as uniform relativization of c.e. sets.

Recall that the use of tt-reduction has a computable bound. If A ≤tt B via
Φ, then there exists a computable function f : ω → ω such that the oracle use
of ΦX(n) is bounded by f(n). In the computation of dom(ΦB) we do not have
such a bound. Uniform relativization is similar to tt-reduction, but it is not
appropriate to identify them.

3.2 Uniform relativization of c.e. open sets

Let us turn to c.e. open sets. An open set U ⊆ 2ω is c.e. if it is θ-computable.
An open set U is c.e. relative to B ∈ 2ω if there is a (Id, θ)-computable function
f :⊆ 2ω → O such that f(B) = U . The function f can be partial but we require
B ∈ dom(f). This is the usual Turing relativization. Notice that the function
f(X) produces a c.e. set for every input X ∈ 2ω, so again uniform relativization
of c.e. openness is the same as its Turing relativization.

We consider the notion of c.e. openness with the measure ≤ 2−n for n ∈ N.
This strange notion comes up in the relativization of Martin-Löf randomness.
An open set U ⊆ 2ω is c.e. and has measure ≤ 2−n relative to B ∈ 2ω if there is a
(Id, θ)-computable function f :⊆ 2ω → O such that f(B) = U and µ(U) ≤ 2−n.
In this case, the measure of µ(f(X)) may be larger than 2−n for some oracle
X ∈ 2ω. However, we can modify f by restricting the enumeration of the cylinder
sets as long as its measure is ≤ 2−n. This modified function f̂ is also computable,
the measure of f̂(X) is ≤ 2−n for each X ∈ 2ω, and f̂(B) = U . Hence, again its
uniform relativization is the same as its Turing relativization.

Finally, we consider the notion of c.e. openness with a computable measure.
This notion corresponds to the relativization of Schnorr randomness. An open
set U ⊆ 2ω is c.e. and has a computable measure Turing relative to B ∈ 2ω if
there are a (Id, θ)-computable function f :⊆ 2ω → O and a (Id, ρC)-computable
function g :⊆ 2ω → R such that f(B) = U and g(B) = µ(U). Notice that f, g
can be partial but we should have B ∈ dom(f) ∩ dom(g).
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In this case, we can not extend f, g to be total by any computable modifica-
tion. Let us give a counterexample. Let A,B ⊆ N be sets such that A ≤T B but
A 6≤tt B. Define U =

⋃
k∈A[0

k1]. Since A ≤T B, the open set U is c.e. Turing
relative to B and its measure is computable Turing relative to B.

Suppose that there exist a total (Id, θ)-computable function f :⊆ 2ω → O
and a total (Id, ρC)-computable function g :⊆ 2ω → R such that µ(f(Y )) = g(Y )
for every Y ∈ 2ω and f(B) = U . Consider the following reduction Φ :⊆ 2ω → 2ω

with an input Y ∈ 2ω. For each n ∈ N, enumerate the inner cylinders of f(Y )
until the measure larger than g(Y )−2−n−1. If the intersection between the finite
approximation and [0n1] is not empty, then ΦY (n) outputs 1. Otherwise, ΦY (n)
outputs 0.

Since µ(f(Y )) = g(Y ) for every Y ∈ 2ω, the reduction can find the finite
approximation for every n and Φ is total. Suppose Y = B and n ∈ A. Then, the
finite approximation Un of f(B) should intersect with [0n1], otherwise µ(Un) >
µ(g(Y ))− 2−n−1 = µ(U)− 2−n−1 and µ(Un ∪ [0n1]) = µ(Un) + 2−n−1 > µ(U),
which contradicts with Un ∪ [0n1] ⊆ U . Hence, ΦB(n) = 1 = A(n). Suppose
Y = B and n 6∈ A. Then, the finite approximation Un of f(B) can not intersect
with [0n1] because Un is the inner approximation of U =

⋃
k∈A[0

k1]. Hence,
ΦB(n) = 0 = A(n). This contradicts with A 6≤tt B.

Now we know that uniform relativization of c.e. openness with a computable
measure is different from its Turing relativization.

3.3 Uniform relativization of Schnorr randomness

We are now ready to define uniform relativization of Schnorr randomness, or
abbreviated by uniform Schnorr randomness. The definition is complicated, but
the idea is the same as the basic notions defined in the above.

Definition 1 ([23]). A uniform Schnorr test is a pair of computable functions
f, g satisfying the follows:

1. f : 2ω × ω → O is (Id, Idω, θ)-computable with µ(f(X,n)) ≤ 2−n for all
X ∈ 2ω and n ∈ ω.

2. g : 2ω × ω → R is (Id, Idω, ρC)-computable such that g(X,n) = µ(f(X,n))
for all X ∈ 2ω and n ∈ ω.

Here, Idω : ω → ω is the identity function on ω. A set A ∈ 2ω is Schnorr random
uniformly relative to B if A 6∈

⋂
n f(B,n) for each uniform Schnorr test 〈f, g〉.

Each Schnorr test uniformly relative to B is a Schnorr test Turing relative to
B. Thus, each Schnorr random Turing relative to B is Schnorr random uniformly
relative to B. Hence, uniform relativized randomness is weaker than Turing
relativized randomness.

We need this relativization for van Lambalgen’s theorem for Schnorr random-
ness to hold. For sets A,B ⊆ N, let A⊕B = {2n : n ∈ A}∪ {2n+1 : n ∈ B}.

Theorem 1 ([23]). The set A⊕B is Schnorr random if and only if A is Schnorr
random and B is Schnorr random uniformly relative to A.
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Theorem 2 ([18, 33] and [25, Remark 3.5.22]). Van Lambalgen’s theorem
fails for Schnorr randomness with Turing relativization.

In particular, uniform relativization of Schnorr randomness is different from
its Turing relativization.

Notice that, if A is Schnorr random and B is Schnorr random Turing relative
to A, then A⊕B is Schnorr random. This is because uniformly relativized Schnorr
randomness is weaker than Turing relativized Schnorr randomness. For the other
direction, assume that A is Schnorr random and B is covered by a Schnorr test
relative to A. One needs uniformity or totality of the test to construct a Schnorr
test covering A⊕B. Uniform relativization naturally comes up when looking at
the proofs of van Lambalgen’s theorem.

3.4 Other characterizations

In the above, we defined uniform Schnorr randomness via tests. Schnorr random-
ness has characterizations by martingales, computable measure machines, and
integral tests. We can also characterize uniform Schnorr randomness by them.
The proofs are straightforward, but we need to check that everything works uni-
formly in oracles. We give the definitions to look at how to uniformly relativize
these notions.

A martingale is a function d : 2<ω → R+ such that 2d(σ) = d(σ0) + d(σ1)
for every σ ∈ 2<ω where R+ is the set of all nonnegative reals. A set X ∈ 2ω

is ML-random if and only if supn d(X � n) < ∞ for all left-c.e. martingales d.
A set X ∈ 2ω is Schnorr random if and only if d(X � n) < f(n) for at most
finitely many n for every computable martingale d and every computable order
f . These are classical results by Schnorr [29, 28]. Here, an order is an unbounded
nondecreasing function from ω to ω. Franklin and Stephan [10] observed that X
is not Schnorr random if and only if there is a computable martingale d and a
computable function f such that (∃∞n)d(X � f(n)) ≥ n.

A uniformly computable martingale is a computable map d : 2ω × 2<ω → R+

such that dZ := d(Z, ·) is a martingale for every Z ∈ 2ω. A set X is Schnorr
random uniformly relative to A if and only if dA(X � n) < f(n) for almost
all n for each uniformly computable martingale d and a computable order f if
and only if dA(X � h(n)) < n for almost all n for each uniformly computable
martingale d and a strictly increasing computable function h [19]. We can replace
the computable order f above with f̂A such that f̂ : 2ω×ω → ω is a computable
function and f̂Z is an order for each Z ∈ 2ω. This is because, for such f̂ , we
can find a computable order f such that f̂Z(n) ≥ f(n) for each n ∈ N and each
Z ∈ 2ω by compactness of 2ω.

Franklin and Stephan [10] defined tt-Schnorr random set X relative to A as
a set such that there are no martingale d ≤tt A and no function g ≤tt A such
that (∃n)d(X � h(n)) ≥ n. We can replace h ≤tt A with a computable function
h [10, Remark 2.4]. This notion is equivalent to Schnorr randomness uniformly
relative to A [23, Proposition 6.1]. However, there are some subtle points to note
in the tt-relativization. See Section 6 in [23] for details.
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Let M :⊆ 2<ω → 2<ω be a Turing machine. The measure (or halting prob-
ability) of M is

∑
σ{2−|σ| : M(σ) ↓}. The measure of a prefix-free Turing

machine is less than or equal to 1 by Kraft’s inequality. The measure of a uni-
versal prefix-free Turing machine U is called Chaitin’s omega, denoted by ΩU ,
which is ML-random [3], hence not computable. A prefix-free Turing machine
with a computable measure is called a computable measure machine. A set X
is Schnorr random if and only if KM (X � n) > n − O(1) for every computable
measure machine M [7].

An oracle prefix-free Turing machine M :⊆ 2ω × 2<ω → 2<ω is a uniformly
computable measure machine if the maps X 7→

∑
σ{2−|σ| : M(X,σ) ↓} is a

total computable function. A set X is Schnorr random uniformly relative to A
if and only if KMA(X � n) > n−O(1) for every uniformly computable measure
machine M (essentially due to [19]).

An integral test is an integrable nonnegative lower semicomputable function
f : 2ω → R+. A set X ∈ 2ω is ML-random if and only if f(X) < ∞ for
each integral test, which is by Levin: see e.g. [17, Subsection 4.5.6, 4.7]. A set
X ∈ 2ω is Schnorr random if and only if f(X) < ∞ for each nonnegative lower
semicomputable function f : 2ω → R+ such that

∫
f dµ is a computable real

[20]. Such a function is called a Schnorr integral test.
A uniform Schnorr integral test is a lower semicomputable function f : 2ω ×

2ω → R+ such that X 7→
∫
f(X,Z)µ(dZ) is a computable function from 2ω to

R. The first component is for oracles and the second for the tested sets A set Y
is Schnorr random uniformly relative to X if and only if f(X,Y ) < ∞ for each
uniform Schnorr integral test f [23, Proposition 4.1].

3.5 Related work

Van Lambalgen’s theorem for uniform Schnorr randomness was further gener-
alized to noncomputable measures [27], and was used in the study of Schnorr
reducibility and total-machine reducibility [22]. Van Lambalgen’s theorem for
uniform relativization of computable randomness holds in a weaker form [23,
Theorem 5.1]. Van Lambalgen’s theorem for uniform Kurtz randomness was
studied in [13]. Van Lambalgen’s theorem for Demuth randomness was studied
in [5], where they used ”partial relativization.”

4 Uniform lowness

Another topic relating to relativized randomness is lowness. First, we recall some
results on lowness for ML-randomness. Then, we see that uniform lowness was
needed to give a Schnorr-randomness version.

4.1 Characterization of triviality via lowness

Many randomness notions have characterizations via complexity. The Levin-
Schnorr theorem says that A ∈ 2ω is ML-random if and only if K(A � n) >
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n−O(1) where K is the prefix-free Kolmogorov complexity. Roughly speaking,
a set is random if the complexities of its initial segments are high. Thus, the
complexity is a measure of randomness. A set A ∈ 2ω is K-reducible to B ∈ 2ω

if K(A � n) < K(B � n)+O(1). This is one formalization of saying that A is not
more random than B. The class of K-trivial sets is the bottom degree of this
reducibility. A set A ∈ 2ω is K-trivial if K(A � n) ≤ K(n) + O(1). Obviously,
every computable set is K-trivial. In contrast, there is a noncomputable K-trivial
set.

Interestingly, K-triviality can be characterized by lowness. A set A ∈ 2ω is
low for ML-randomness if every ML-random set Turing relative to A is already
(unrelativized) ML-random. This means that the set A can not derandomize any
ML-random set. These notions coincide, that is, a set A ∈ 2ω is K-trivial if and
only if A is low for ML-randomness. For details on this topic, see e.g. [24].

We have Schnorr-randomness counterparts of these notions as follows.

Definition 2 ([7]). A set A ∈ 2ω is Schnorr reducible to B ∈ 2ω denoted by
A ≤Sch B if, for every computable measure machine M , there exists a computable
measure machine N such that KN (A � n) ≤ KM (B � n) + O(1). A set A ∈ 2ω

is called Schnorr trivial if A ≤Sch ∅.

This notion can be characterized by uniform lowness for Schnorr randomness.
A set A ∈ 2ω is called uniformly low for Schnorr randomness if every Schnorr
random set uniformly relative to A is already Schnorr random.

Theorem 3 (essentially due to [10]). A set A ∈ 2ω is Schnorr trivial if and
only if A is uniformly low for Schnorr randomness.

Since there is a Turing-complete Schnorr trivial set [8], some Schnorr trivial
sets are not Turing low for Schnorr randomness. Hence, uniform lowness and
Turing lowness for Schnorr randomness are different.

4.2 Other characterizations

The class of K-trivial sets has many characterizations, and so does the class of
Schnorr trivial sets.

The first one is by traceability. A trace is a sequence {Tn} of sets. A trace for
a function f is a trace {Tn} with f(n) ∈ Tn for all n. For a function h, a trace
{Tn} is h-bounded if |Tn| ≤ h(n) for all n. A set A is computable tt-traceable
if there is a computable order h such that all functions f ≤tt A are traced by
an h-bounded computable trace. Roughly speaking, the values computable from
traceable sets have limited possibilities. Many variants were studied in Hölzl and
Merkle [12].

Franklin and Stephan [10] showed that uniform lowness of Schnorr random-
ness is equivalent to computable tt-traceability. There is no counterpart for ML-
randomness. This result is a modification of the one that Turing lowness of
Schnorr randomness is equivalent to computable (Turing) traceability [31, 15].



10 K. Miyabe

The next one is by lowness for machines. A set A is called low for K if
K(n) ≤ KA(n) + O(1). This means that the set A can not compress n more
than without it. In fact, a set is K-trivial if and only if it is low for K.

A Schnorr-randomness version is as follows. We say that a set A is uni-
formly low for computable measure machines if, for every uniformly computable
measure machine M , there exists a computable measure machine N such that
KN (n) ≤ KMA(n) +O(1). Then, uniform lowness for computable measure ma-
chines is equivalent to computable tt-traceability [19], hence to Schnorr triviality.
The proof was given by straightforward modification of the fact that Turing low-
ness for computable measure machines is equivalent to computable traceability
[6].

The class of K-trivial sets also has a base-type characterization. A set A is a
base for ML-randomness if there exists a ML-random set X relative to A such
that A ≤T X. Notice that each computable set is a base for ML-randomness. If
A has much information, the class of ML-random sets relative to A is so small
that we can not find such a set in the Turing degrees above A.

Its Schnorr-randomness version is not straightforward. See the discussion in
[10, Section 6]. We say that a set A is a base for Schnorr randomness if there
is no X ≥T A such that X is Schnorr random Turing relative to A. Franklin,
Stephan, and Yu [11] showed that this is equivalent to saying that the set A does
not compute the halting problem.

One adaptation is as follows. A set A is a tt-base for uniformly computable
martingales if, for each uniformly computable martingale d, there exists a set
X ≥tt A such that supn d

A(X � n) < ∞. The last condition roughly means that
X is computably random uniformly relative to A only for this d. It turns out
that Schnorr triviality is equivalent to being a tt-base for uniformly computable
martingales [21, Theorem 6.4].

4.3 Related work

Decidable prefix-free machines also characterize ML-randomness and Schnorr
randomness [1]. Schnorr reducibility can be characterized by complexity for
prefix-free decidable machines by adding a computable order. We write A ≤wdm

B if, for each decidable prefix-free machine M and a computable order g, there
exists a decidable prefix-free machine N such that KN (A � n) ≤ KM (B �
n) + g(n) + O(1). In fact, A ≤wdm B if and only if A ≤Sch B [21, Theorem
3.5]. In particular, Schnorr triviality has a characterization by decidable prefix-
free machines.

Schnorr triviality is also equivalent to not totally i.o. complex [12], which is
a characterization by total machines.

The equivalence between lowness for ML-randomness and lowness for K
was strengthened to the equivalence between ≤LR and ≤LK [14]. Its uniform
Schnorr-randomness version was proved in [21, Theorem 5.1] and Turing rela-
tivized Schnorr-randomness version in [22].
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Computable traceability was characterized by order-lowness for prefix-free
decidable machines [1, Theorem 24]. Recall that computable traceability is equiv-
alent to Turing lowness for Schnorr randomness.
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