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Abstract. We try to predict the next bit from a given finite binary
string when the sequence is sampled from a computable probability mea-
sure on the Cantor space. There exists the best betting strategy among a
class of effective ones up to a multiplicative constant, the induced predic-
tion from which is called algorithmic probability or universal induction
by Solomonoff. The prediction converges to the true induced measure
for sufficiently random sequences. However, the prediction is not com-
putable.
We propose a framework to study the properties of computable predic-
tions. We prove that all sufficiently general computable predictions also
converge to the true induced measure. The class of sequences along which
the prediction converges is related to computable randomness.
We also discuss the speed of the convergence. We prove that, even when a
computable prediction predicts a computable sequence, the speed of the
convergence cannot be bounded by a computable function monotonically
decreasing to 0.

Keywords: algorithmic probability · universal induction · computable
randomness

1 Introduction

Given data, one finds regularity and predicts the future. This is what all living
things are doing and what we want to make machines do. Is there a universal
way of doing this? If so, what properties should the prediction have?

Solomonoff’s algorithmic probability or universal induction answers. For sim-
plicity, consider the case of infinite binary sequences, that is, the Cantor space 2ω.
We try to predict the next bit from a given finite binary string. It is known that
there is an optimal c.e. semi-measure M on the Cantor space. Here, a function
is c.e. if it can be computably approximated from below and optimality means
that it dominates all c.e. semi-measures up to a multiplicative constant. See the
definition in Section 2.1. By the usual correspondence between measures and
martingales (or semi-measures and supermartingales), this roughly means that
the prediction by M behaves at least as well as one by any c.e. semi-measure.
The prediction induced from an optimal c.e. semi-measure is called algorithmic
probability or universal induction.
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Algorithmic probability has some desirable properties. One of them is the
convergence to the true induced measure (Theorem 2.3 below). This roughly
means that algorithmic probability can find any computable regularity unknown
in advance.

In this paper, we propose a framework showing that all sufficiently general
prediction should have some properties. That a program has a property does
not mean that the program is general enough, however, that a program does not
have a property means that the program can be modified to a more general one.
By evaluating computational complexity that a function with a property should
have, we can also discuss how difficult to add the property although we do not
discuss much this in this paper.

We focus on the speed of the convergence. One of our results (Theorem 4.4)
says that, for all sufficiently general computable predictions, the speed of the con-
vergence to the true measure cannot be bounded by a computable function. Thus,
incomputability of the rate of the convergence is not by the incomputability of
algorithmic probability. Rather than that, it is by the existence of computable
measures that are ”close” to each other.

The structure of the paper as follows. In Section 2 we review some notions
and results on algorithmic randomness and algorithmic probability. In Section
3 we prove the convergence result for computable predictions along computably
random sequences. In Section 4 we consider the case of Dirac measures and show
the incomputability of the rate of the convergence.

2 Preliminaries

2.1 Algorithmic randomness

We follow the notation in computability theory (see e.g. [10]) or the theory of
algorithmic randomness (see e.g. [8, 1]).

The Cantor space 2ω is the class of all infinite binary sequences equipped
with the topology generated by the base elements of the cylinders [σ] = {X ∈
2ω : σ ≺ X} where ≺ denotes the prefix relation. A function f : ω → ω is
computable if it is computable by a Turing machine. The computability on Q
or 2<ω is naturally induced by their natural representation by ω. A real x ∈ R
is called computable if there exists a computable sequence (an)n∈ω of rationals
such that |x− an| ≤ 2−n for all n. A real x ∈ R is called left-c.e. if there exists
an increasing computable sequence (an)n∈ω of rationals.

A function f : 2<ω → R is called computable or c.e. if f(σ) is computable
or left-c.e. uniformly in σ ∈ 2<ω, respectively. A measure µ on 2ω is computable
if the function σ 7→ µ([σ]) =: µ(σ) is computable. A semi-measure is a function
µ : 2<ω → [0, 1] such that µ(λ) ≤ 1 and µ(σ) ≥ µ(σ0)+µ(σ1) for every σ ∈ 2<ω

where λ denotes the empty string. A measure µ with µ(λ) = µ(2ω) = 1 is called
a probability measure. Notice that each semi-measure µ satisfying µ(λ) = 1 and
µ(σ) = µ(σ0) + µ(σ1) for every σ ∈ 2<ω can be seen as a probability measure.

Let µ, ν be measures or semi-measures on 2ω. We say µ multiplicatively dom-
inates (or m-dominates) ν if, there exists C ∈ ω such that ν(σ) ≤ Cµ(σ) for all
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σ ∈ 2<ω. A c.e. semi-measure µ is called optimal if µ m-dominates every c.e.
semi-measure. An optimal c.e. semi-measure exists.

Fix a computable probability measure µ. Martin-Löf randomness (or ML-
randomness) is an important concept to talk about randomness of individual
sequences. ML-randomness is usually defined by tests, but we give an equivalent
characterization to compare it with the definition of computable randomness
below. Let X≤n = X1X2 · · ·Xn be the initial segment of X with length n.

Theorem 2.1 ([6]) A sequence X ∈ 2ω is ML-random w.r.t. µ (or µ-ML-
random) if and only if there exists a constant C ∈ ω such that ξ(X≤n) ≤
Cµ(X≤n) for all n, where ξ is an optimal c.e. semi-measure.

By the optimality, this is equivalent to the following statement: For every c.e.
semi-measure ξ, there exists a constant C ∈ ω such that ξ(X≤n) ≤ Cµ(X≤n) for
all n.

The central notion in this paper is computable randomness. Computable
randomness for the uniform measure is defined by martingales however, Rute
[9] has suggested the following definition for a general computable probability
measure.

Definition 2.2 A sequence X ∈ 2ω is computably random w.r.t. µ (or µ-
computably random) if µ(X≤n) > 0 for all n and lim supn ξ(X≤n)/µ(X≤n) < ∞
for all computable measures ξ.

It is not difficult to see that this is equivalent to the following statement: For
every computable measure ξ, there exists a constant C ∈ ω such that ξ(X≤n) ≤
Cµ(X≤n) for all n. ML-randomness implies computable randomness, but the
converse does not hold in general.

2.2 Algorithmic probability

We review some results from algorithmic probability. For details, see e.g. [2].
Let µ be an optimal c.e. semi-measure. Fix a sequence X ∈ 2ω. We are

interested in the ratio
µ(k|X<n) =

µ(X<nk)

µ(X<n)
,

where X<n = X1 · · ·Xn−1 and k ∈ {0, 1}. Notice that X0 denotes the empty
string. The function k 7→ µ(k|X<n) is a measure on {0, 1} but the measure
of the whole space {0, 1} need not be 1. The ratio can be understood as the
conditional probability of the n-th bit given the initial (n− 1) bits of X, and is
called algorithmic probability.

One of the desirable properties of algorithmic probability is the following
convergence to the true induced measure.

Theorem 2.3 Let µ be a computable probability measure on 2ω and ξ be an
optimal c.e. semi-measure. Suppose X ∈ 2ω is sampled from µ. Then,

ξ(k|X<n)− µ(k|X<n) → 0 as n → ∞ (1)
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for both k ∈ {0, 1} and

ξ(Xn|X<n)

µ(Xn|X<n)
→ 1 as n → ∞ (2)

with µ-probability 1.
The convergence (1) is called the convergence in difference by Solomonoff [11].
The convergence (2) is called the convergence in ratio in Li-Vitányi’s book [7,
Theorem 5.2.2, p.433]. Remark that the difference between on-sequence and off-
sequence. The speed of the convergence is one of our interest, which has been
discussed briefly in [3] but has not been established.

2.3 Distance measures between probability measures
The following notions are important in the proof of the convergence. For proba-
bility measures µ, ξ on {0, 1}, we define the squared Hellinger distance H2(ν, ξ)
by

H2(µ, ξ) =
1

2

∑
k∈{0,1}

(
√

µ(k)−
√

ξ(k))2 = 1−
∑

k∈{0,1}

√
µ(k)ξ(k).

From the equalities above, 0 ≤ H2(µ, ξ) ≤ 1. We also use the Kullback-Leibler
divergence (or KL-divergence) of µ with respect to ξ defined by

D(µ||ξ) =
∑

k∈{0,1}

µ(k) ln
µ(k)

ξ(k)

where ln is the natural logarithm and 0 · ln 0
z = 0 for z ≥ 0 and y ln y

0 = ∞ for
y > 0. The two notions are related by the following inequality:

2H2(µ, ξ) ≤ D(µ||ξ). (3)

One can check this by direct calculation or see Hutter [2, Lemma 3.11h].

3 Convergence along computable random sequences

3.1 Convergence results
Algorithmic probability is computably approximable or ∆0

2 but not computable
while all the functions we can implement are computable. The correct or ideal
prediction may have some properties that algorithmic probability has, however,
implementing a program with one of such properties may be impossible. Thus,
this does not say anything about whether our implementable prediction should
have the properties. That a program does not have one of such properties does
not say that the program is not general enough.

The goal of this paper is to give a framework to study the properties of
computable measures or predictions. Algorithmic probability uses an optimal
c.e. semi-measure while no computable measure m-dominates all computable
measures. We abandon to pursue the unique correct prediction. Instead, we ask
the following:
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Which properties do all sufficiently general predictions have?

Notice that this statement is about a prediction that can be implemented in
reality.

As a definition of the ”generality” above, we use m-domination inspired by
the definition of optimality. More concretely, we construct a computable measure
ν such that a property P holds for all computable measures m-dominating ν.
This means that P holds for all sufficiently general predictions. There are many
quantifiers, and we will see that their order is important.

Suppose that, a property P is witnessed by a computable measure νP , that is,
all computable measures ξ m-dominating νP have the properties P . Similarly,
suppose that a property Q is witnessed by a computable measure νQ. Then,
the property P ∧ Q is witnessed by the computable measure (νP + νQ)/2. The
composition of properties can be extended into computable countable sum.

Some property P may be witnessed by a measure µ executable in feasible
time. If some good prediction induced from ν does not have the property P ,
then the prediction by εµ+(1− ε)ν for a positive rational ε is more general than
ν in the sense above, and the computation cost may be still reasonable.

Now, we give computable versions of Theorem 2.3 as follows.

Theorem 3.1 Let µ be a computable probability measure on 2ω. For all com-
putable probability measures ξ m-dominating µ and for all µ-computably random
sequence X ∈ 2ω, we have

∞∑
n=1

D(µ(·|X<n) ||ξ(·|X<n)) < ∞.

In particular,
ξ(k|X<n)− µ(k|X<n) → 0 as n → ∞

for both k ∈ {0, 1}.

Theorem 3.2 Let µ be a computable probability measure. For all computable
probability measure ξ m-dominating µ and for all µ-computably random sequence
X ∈ 2ω, we have

ξ(Xn|X<n)

µ(Xn|X<n)
→ 1 as n → ∞.

Notice that both Theorem 3.1 and 3.2 claim the existence of a computable
measure ν(= µ) such that for all computable measures ξ m-dominating ν have
some properties, that is, all sufficiently general computable measures have some
properties.

Hutter and Muchnik [3] has shown that ”µ-probability 1” in Theorem 2.3
cannot be replaced by ”for all µ-ML-random sequences X.” The above theorem
says that, for a computable probability measure, we only need µ-computable
randomness.
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3.2 Martingale characterization and convergence

We use a martingale characterization of computable randomness and a conver-
gence theorem of martingales. The following characterization is due to [9].

Definition 3.3 Let µ be a computable probability measure. A martingale M
with respect to µ is a partial function M :⊆ 2<ω → R+ such that the following
two conditions hold:

(i) (Impossibility condition) If M(σ) is undefined, then µ(σ) = 0.
(ii) (Fairness condition) For all σ ∈ 2<ω, we have

M(σ0)µ(σ0) +M(σ1)µ(σ1) = M(σ)µ(σ)

where undefined · 0 = 0 and R+ is the set of all non-negative reals.

We say M is an almost-everywhere computable martingale (or a.e. com-
putable martingale) if M is a partial computable function. We say M succeeds
on X ∈ 2ω if lim supn→∞ M(X≤n) = ∞.

Proposition 3.4 Let µ be a computable probability measure on 2ω. Then, X ∈
2ω is µ-computably random if and only if µ(X≤n) > 0 for all n and there is no
a.e. computable martingale M which succeeds on X.

Computable randomness with respect to the uniform measure can be char-
acterized as the existence of the limit along the sequence for all computable
martingales (see, e.g. [1, Theorem 7.1.3]) by using Doob’s upcrossing argument.
The same method can be applied for any computable measure.

Proposition 3.5 Let µ be a computable probability measure on 2ω. Then, X ∈
2ω is µ-computably random if and only if limn→∞ M(X≤n) exists for all a.e.
computable martingales M .

3.3 Proof of Theorem 3.1

Proof. Since ξ m-dominates µ, there exists a constant C ∈ ω such that

µ(σ) ≤ Cξ(σ) (4)

for all σ ∈ 2<ω. Let D(σ) be the KL-divergence of µ w.r.t. ξ at σ, that is,

D(σ) = D(µ(·|σ) || ξ(·|σ)).

We define a function M :⊆ 2<ω → R+ by

M(σ) = lnC − ln
µ(σ)

ξ(σ)
+

|σ|∑
t=1

D(σ<t)

for every σ ∈ 2<ω.
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We claim that M is an a.e. computable martingale w.r.t. µ. The function M is
non-negative because of (4) and the non-negativeness of D. For the impossibility
condition of Definition 3.3, notice that, if µ(σ) > 0, then ξ(σ) > 0 because ξ
m-dominates µ, thus M(σ) is defined. Then, the a.e. computability of M follows
from the computability of µ, ξ, and D. For the fairness condition,∑
k∈{0,1}

µ(σk)M(σk)− µ(σ)M(σ) = −
∑

k∈{0,1}

µ(σk) ln
µ(k|σ)
ξ(k|σ)

+ µ(σ)D(σ) = 0.

Since X is µ-computably random, we have lim supn M(X≤n) < ∞. Since both
lnC − ln µ(σ)

ξ(σ) and D(σ) are always non-negative,
∑∞

n=1 D(X≤n) also converges.
Finally, the last claim of the theorem follows by (3). ut

3.4 Proof of Theorem 3.2

Proof. Suppose that ξ is a computable measure m-dominating the measure µ.
We define a function M : 2<ω → R+ by

M(σ) =
ξ(σ)

µ(σ)
.

Then, M is a a.e. computable martingale w.r.t. µ. Hence, limn M(X≤n) = α
exists for all µ-computably random sequences X ∈ 2ω.

Since ξ m-dominates µ, there exists C ∈ ω such that µ(σ) ≤ Cξ(σ) for every
σ ∈ 2<ω. Then,

M(X≤n) =
ξ(X≤n)

µ(X≤n)
≥ 1

C

for every n. Thus, α ≥ 1
C .

Fix ε > 0. Then, there exists N ∈ ω such that∣∣∣∣ ξ(X≤n)

µ(X≤n)
− α

∣∣∣∣ = |M(X≤n)− α| ≤ ε

3C

for all n ≥ N . Thus,

ξ(Xn|X≤n)

µ(Xn|X≤n)
=

ξ(X≤n)

µ(X≤n)
· µ(X<n)

ξ(X<n)
≤ α+ ε/(3C)

α− ε/(3C)
= 1 + ε · 2

3αC − ε
< 1 + ε

for all n ≥ N + 1 if ε is sufficiently small. Similarly, ξ(Xn|X≤n)

µ(Xn|X≤n)
> 1 − ε for all

n ≥ N + 1. Since ε is arbitrary, the claim follows. ut

4 Non-computability of the convergence

From now on, we only consider the case that µ is the Dirac measure on a point
A ∈ 2ω. If µ is computable, then A should be computable. Theorem 3.1 in this
case can be written as follows.
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Corollary 4.1 Let A ∈ 2ω be a computable sequence. There exists a computable
measure ν such that ∑

n

(1− ξ(An|A<n)) < ∞ (5)

for all computable measures ξ m-dominating ν. In particular, ξ(An|A<n) → 1
as n → ∞.

Proof. Let µ be the Dirac measure on the point A ∈ 2ω. Then, A is µ-computably
random. By Theorem 3.1, we have

∑∞
n=1 ln

1
ξ(An|A<n)

< ∞. Finally, notice that∑
n

ln(1− (1− ξ(An|A<n))) > −∞ ⇐⇒
∑
n

(1− ξ(An|A<n)) < ∞.

ut
All sufficiently general computable measures can detect the pattern of a com-

putable sequence A while no computable measure can detect the pattern of all
computable sequences. One needs to pay attention to the order or quantifiers.

Remark 4.2 For each computable measure ξ, there exists a computable sequence
A such that ξ(An|A<n) does not converge to 1.

This claim is essentially the same as a famous fact in algorithmic learning
theory that the class of all computable sequences is not BC-learnable. See e.g.
[12] for a survey on algorithmic learning theory. A stronger result in the context
of universal induction is in [4, Lemma 5.2.4]. For the sake of self-containedness,
we give a short proof here in our terminology.
Proof. Let (εn)n be a computable sequence of positive rationals such that εn < 1

2
for all n and

∏
n(1 + εn) < ∞. For each σ, at least one of i ∈ {0, 1} satisfies

ξ(σi) <
1+ε|σ|

2 ξ(σ). This is a c.e. relation and one can compute such i from σ
uniformly. By iterating this, one can compute a sequence A such that ξ(A≤n) <
1+εn

2 ξ(A<n) for all n. Since εn → 0, we have

lim sup
n

ξ(An|A<n) ≤ lim sup
n

1 + εn
2

≤ 1

2
.

ut
The following theorem says that all sufficiently general predictions ξ(An|A<n)

are not too close to 1; they have almost the same convergence speed (5) up to
a multiplicative constant. The convergence speed ξ(An|A<n) to 0 is the slowest
one among the sequences whose sum converge. Let k = 1− k for k ∈ {0, 1}.

Theorem 4.3 Let A ∈ 2ω be a computable sequence and (an)n be a computable
sequence of positive rationals such that

∑
n an < ∞. Then, there exists a com-

putable measure ν with the following property: For each computable measure ξ
m-dominating ν, there exists a natural number C ∈ ω such that

ξ(An|A<n) ≥
an
C

for all n.



Computable prediction 9

Notice that (an)n need not be monotone.

Proof. Without loss of generality, we can assume that s =
∑

n an < 1. Define a
measure ν by

ν =
∑
n

an1A<nAn0ω
+ (1− s)1A

where 1X is the point-mass measure on X ∈ 2ω.
We claim that this measure ν is computable. It suffices to show that ν(σ) is

computable uniformly in σ ∈ 2<ω. If σ ≺ A, then

ν(σ) =
∑
n≥|σ|

an + 1− s = 1−
∑
n<|σ|

an.

If σ = A<kAk0
i for some k, i ∈ ω, then

ν(σ) = ak.

If σ = A<kAk0
i1τ for some k, i ∈ ω and τ ∈ 2<ω, then

ν(σ) = 0.

In any case, ν(σ) is computable from n.
Suppose that a computable measure ξ m-dominates ν. Then, there exists

C ∈ ω such that ν(σ) ≤ Cξ(σ) for all σ ∈ 2<ω. Then,

ξ(An|A<n) = 1− ξ(A≤n)

ξ(A<n)
=

ξ(A<nAn)

ξ(A<n)
≥ ν(A<nAn)

C
=

an
C

.

ut

The rate of convergence of ξ(An|A<n) to 0 is not monotone. In fact, it cannot
be bounded by a decreasing computable function converging to 0.

Theorem 4.4 Let A ∈ 2ω be a computable sequence. Then, there exists a com-
putable measure ν such that no decreasing computable sequence (bn)n converging
to 0 m-dominates ξ(An|A<n) for all computable measures ξ m-dominating ν.

Proof. Let U :⊆ 2<ω → 2<ω be a universal prefix-free machine. By the usual
convention, U(σ)[s] ↑ for each s < |σ|. For all n, let

an =
∑
σ

{2−|σ| : U(σ) ↓ at stage n}.

Note that (an)n is a computable sequence because the possible σ should satisfy
|σ| ≤ n by the convention. Furthermore,∑

n

an =
∑

σ∈dom(U)

2−|σ| < 1.
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Then, by Theorem 4.3, there exists a computable measure ν such that ν(An|A<n)
m-dominates (an)n.

Suppose that there exists a decreasing computable (bn)n such that bn → 0
as n → ∞ and (bn)n m-dominates ν(An|A<n). Then, (bn)n also m-dominates
(an)n, and let C ∈ ω such that an ≤ 2Cbn for all n.

For each σ, search the least n ∈ ω such that bn < 2−|σ|−C . If U(σ)[n] ↑ and
U(σ)[s] ↓ for some s > n, then as ≥ 2−|σ| by the definition of (an)n, and

as ≤ 2Cbs ≤ 2Cbn < 2−|σ|,

which is a contradiction. Thus, U(σ) ↓ if and only if U(σ)[n] ↓. Since n is com-
putable from σ uniformly, this means that the halting problem is computable,
which is a contradiction. Hence, such (bn)n does not exist. ut

It may be interesting to compare the above result to Laplace’s answer to
the sunrise problem. The answer n

n+1 is slightly slower than (5). Theorem 4.4
means that all sufficiently general prediction violates Nicod’s criterion as the
usual Solomonoff induction does [5].
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