Subclasses of the weakly computable reals

Kenshi Miyabe

Meiji University

9 June, 2022 CCR 2022 @ INI & Online Partly joint work with Masahiro Kumabe (Open Univ.) and Toshio Suzuki (TMU).

Real closed field

- We consider a subclass $\mathcal{F} \subseteq \mathbb{R}$.
- ${\mathcal F}$ is called a real closed field if it is closed under
 - addition, subtraction, multiplication, division,
 - \blacktriangleright taking real roots of polynomials with coefficients in \mathcal{F}

Examples

Example 1

- 1. \mathbb{R}
- 2. the real algebraic numbers (real roots of polynomials of rational coefficients)
- 3. the computable reals (see Pour-El and Richards 1989)
- 4. the weakly computable reals (Ng 2005, Raichev 2005)
- 5. the non-random weakly computable reals (Miller 2017)
- 6. the primitive recursive reals (due to Peter Hertling, see Selivanov and Selivanova 2021)

Let α, β be weakly computable reals. Then, α is strongly Solovay reducible to β , denoted by $\alpha \ll_S \beta$, if, for every c > 0, there exist comp. $(a_n) \to \alpha$ and $(b_n) \to \beta$ such that

$$|a_n - \alpha| \le c(|b_n - \beta| + 2^{-n})$$

for all n.

Theorem 3

For any $\beta \in \mathbb{R}_{wc}$, $\{\alpha : \alpha \ll_S \beta\}$ is a real closed field.

Here, $\alpha \ll_S \Omega$ if and only if α is a non-random weakly computable real.

Kenshi Miyabe (Meiji University)

Subclasses of the weakly computable reals

Table of Contents

• Definition

Extension to Reducibility

• Some related results

Definition

First, we review some definitions and related results.

Weakly computable reals

A real $\alpha \in \mathbb{R}$ is computable if there is a computable sequence $(a_n)_n$ of rationals such that $|a_n - a_{n-1}| \leq 2^{-n}$ for all $n \geq 1$ and $\lim_n a_n = \alpha$. A real $\alpha \in \mathbb{R}$ is weakly computable if there is a computable sequence $(a_n)_n$ of rationals such that $\sum_n |a_n - a_{n-1}| < \infty$ and $\lim_n a_n = \alpha$. A real $\alpha \in \mathbb{R}$ is left-c.e. if there is a computable sequence $(a_n)_n$ of rationals such that $a_{n-1} \leq a_n$ for all $n \geq 1$ and $\lim_n a_n = \alpha$. A real is weakly computable if and only if it is the difference of two left-c.e. reals

(Ambos-Spies, Weihrauch, and Zheng 2000).

Thus weakly computable reals are sometimes called d.c.e. reals.

Extended Solovay reducibility

Definition 4 (Rettinger and Zheng 2005, after Solovay 1975) $\alpha \in \mathbb{R}_{wc}$ is (extended) Solovay reducible to $\beta \in \mathbb{R}_{wc}$ (denoted by $\alpha \leq_S \beta$) if there are

computable sequence $(a_n)_n$ and $(b_n)_n$ of rationals such that

$$\lim_{n} a_n = \alpha, \ \lim_{n} b_n = \beta, \ (\exists c) (\forall n) (|a_n - \alpha| \le c(|b_n - \beta| + 2^{-n}))$$

Intuitively, we can compute, from a good approximation of β , a good approximation of α . However, the approximation b_n may be too good. Thus, we add the error 2^{-n} .

Randomness

difficult to approximate \approx random

Theorem 5 (Rettinger and Zheng 2005, after Chaitin 1976, Solovay 1975, Calude et al. 1998, Kučera and Slaman 2001)

Any Martin-Löf random real in \mathbb{R}_{wc} is Solovay complete.

- Any random left-c.e. real is Solovay complete in left-c.e. reals.
- Any random weakly computable real is left-c.e. or right-c.e.
- Any weakly computable real is Solovay reducibile to Ω .

Summary

Kenshi Miyabe (Meiji University)

Subclasses of the weakly computable reals

9 June, 2022 CCR 2022 @ INI & Online 11 / 32

Table of Contents

• Definition

• Extension to Reducibility

• Some related results

Extension to reducibility

Theorem 6

Let $\beta \in \mathbb{R}_{wc}$. Then,

$$S(\leq \beta) = \{ \alpha \in \mathbb{R}_{wc} : \alpha \leq_S \beta \}$$

is a real closed field.

13/32

Locally Lipschitz

Definition 7

 $f: \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz if, for $x \in \text{dom}(f)$, there is a neighborhood U of x and

a Lipschitz-constant \boldsymbol{L} such that

$$(\forall \mathbf{u}, \mathbf{v} \in U) | f(\mathbf{u}) - f(\mathbf{v}) | \le L \cdot |\mathbf{u} - \mathbf{v}|)$$

where $|\mathbf{u} - \mathbf{v}| = \sum_{i=1}^{n} |u_i - v_i|$.

 $S(\leq \beta)$ is closed under a locally Lipschitz computable function: If $\alpha \leq_S \beta$, then $f(\alpha) \leq_S \beta$.

Proof ingredients

- Rettinger and Zheng (2005) have already shown that $S(\leq \beta)$ is a field. McNicholl (2008) showed that the implicit function for continuously differentiable computable functions is computable.
- Following Raichev (2005), the combination with these results shows the result above.

15/32

Another extension

Miller's result states that the non-random weakly computable reals form a real closed field. Another formulation is that

$$\{\alpha \in \mathbb{R}_{wc} : \alpha <_S \Omega\}$$

forms a real closed field.

One interpretation is that one can not construct a random real from non-random reals by taking real roots of polynomials.

Another extension impossible

For any non-random $\beta \in \mathbb{R}_{wc}$, $\{\alpha \in \mathbb{R}_{wc} : \alpha <_S \beta\}$ is not a real closed field.

Theorem 8 (Demuth 1975)

If α, β are left-c.e. reals such that $\alpha + \beta$ is random, then at least one of α, β is random.

Theorem 9 (Downey, Hirschfeldt, and Nies 2002)

If α is non-random left-c.e. real. Then, there are left-c.e. reals β, γ such that $\beta, \gamma <_S \alpha$ and $\beta + \gamma = \alpha$.

Strong Solovay reducibility

Let α, β be positive left-c.e. reals.

 $\alpha \ll_S \beta$ if one of the following equivalent conditions holds:

1. For any c > 0, there exist $(a_n) \uparrow \alpha$ and $(b_n) \uparrow \beta$ such that $\alpha - a_n < c(\beta - b_n)$ for all n.

2.
$$c\beta - \alpha$$
 is a left-c.e. real for any $c > 0$.
3. $\frac{c\beta}{\alpha}$ is a left-c.e. real for any $c > 0$.

Compare the equation in Miller (2017):

$$\partial \alpha = \frac{\partial \alpha}{\partial \Omega} = \lim_{s \to \infty} \frac{\alpha - \alpha_s}{\Omega - \Omega_s} = \inf \{ c \in \mathbb{Q} \ : \ c\Omega - \alpha \text{ is left-c.e.} \}.$$

Strong Solovay reducibility

Let α, β be left-c.e. reals. Then,

$$\alpha \ll_K \beta \Rightarrow \alpha \ll_S \beta \Rightarrow \alpha <_S \beta \Rightarrow \alpha \leq_K \beta.$$

where $\alpha \ll_K \beta$ if $\lim_n (K(\beta \upharpoonright n) - K(\alpha \upharpoonright n)) = \infty$.

Furthermore, the converses do not hold. For the first one, there exists a non-random left-c.e. real α such that $\liminf_n (K(\Omega \upharpoonright n) - K(\alpha \upharpoonright n)) < \infty$. For the second one, consider a non-random β and $\alpha_1, \alpha_2 <_S \beta$ such that $\alpha_1 + \alpha_2 = \beta$.

Strong Solovay reducibility

Then, if $\alpha \ll_S \gamma$ and $\beta \ll_S \gamma$, then $\alpha + \beta \ll_S \gamma$. Furthermore,

 $\alpha \ll_{S} \Omega \iff \alpha <_{S} \Omega,$ $\alpha \ll_{S} \beta <_{S} \Omega \Rightarrow \alpha <_{S} \beta$

Strong Solovay for weakly computable reals

Definition 10

Let α, β be weakly computable reals. Then, α is strongly Solovay reducible to β , denoted by $\alpha \ll_S \beta$, if, for every c > 0, there exist comp. $(a_n) \to \alpha$ and $(b_n) \to \beta$ such that

$$|a_n - \alpha| \le c(|b_n - \beta| + 2^{-n})$$

for all n.

Theorem 11

For any $\beta \in \mathbb{R}_{wc}$, $\{\alpha : \alpha \ll_S \beta\}$ is a real closed field.

Here, $\alpha \ll_S \Omega$ if and only if α is a non-random weakly computable real.

Kenshi Miyabe (Meiji University)

Subclasses of the weakly computable reals

Some properties

- If $\alpha_1 \equiv_S \alpha_2$, $\beta_1 \equiv_S \beta_2$, and $\alpha_1 \ll_S \beta_1$, then $\alpha_2 \ll_S \beta_2$.
- ► For left-c.e. reals, the two definitions coincide.
- $\alpha \ll_S \alpha$ if and only if α is computable.

Table of Contents

• Definition

Extension to Reducibility

• Some related results

rK-reducibility

Definition 12 (Downey, Hirschfeldt, and LaForte 2004)

 $\alpha \leq_{rK} \beta$ if

 $K(\alpha \upharpoonright n \mid \beta \upharpoonright n) = O(1).$

Theorem 13 (Raichev 2005)

For each $\beta \in 2^{\omega}$,

 $\{\alpha : \alpha \leq_{rK} \beta\}$

forms a real closed field.

K-trivial

Theorem 14

The class of K-trivial reals is a subclass of weakly computable reals and forms a real closed field.

Theorem 15 (Figueira, Stephan, and Wu 2006)

There is a universal machine U and an integer m such that for every $K\mbox{-trivial}$ real

 $R \in [0, 2^{-m}]$ there is a co-c.e. set X with $R = \Omega_U[X] = \sum_{p:U(p)\downarrow \in X} 2^{-|p|}$.

Theorem 16 (Downey, Hirschfeldt, Nies, and Stephan 2003)

If α, β are K-trivial, then so is $\alpha + \beta$.

Extension to weakly computable reals

Let α,β be left-c.e. reals. Then,

$$\alpha \ll_{K} \beta \Rightarrow (\forall (a_{n}) \uparrow \alpha) (\forall (b_{n}) \uparrow \beta) \lim_{n} \frac{\alpha - a_{n}}{\beta - b_{n}} = 0$$
$$\Rightarrow (\exists (a_{n}) \uparrow \alpha) (\exists (b_{n}) \uparrow \beta) \lim_{n} \frac{\alpha - a_{n}}{\beta - b_{n}} = 0$$
$$\Rightarrow \alpha \ll_{S} \beta \Rightarrow \alpha <_{S} \beta$$

There are some other possibilities for the combination and the order of \forall and \exists . Can we extend to the weakly computable reals?

Straightforward extension is impossible

Fact 17

There are $\alpha \in \mathbb{R}_{wc}$ and $\beta \in \mathbb{R}_{lce}$ such that

 $\alpha \ll_K \beta, \ \alpha \not\leq_S \beta.$

Let $\Omega_{1/2} = \sum_{p:U(p)\downarrow} 2^{-2|p|}$. Then, the effective Hausdorff dimension is 1/2, and the number of the changes can be bounded, from which we can construct a desired weakly computable real α .

Strong K to Strong Solovay

 \ll_K implies \ll_S for left-c.e. reals

The key observation is that all following values have roughly the same complexity:

- $\blacktriangleright \ \alpha \restriction n$
- $\min\{s : \alpha a_s < 2^{-n}\}$
- $\blacktriangleright \max\{s : \alpha a_s > 2^{-n}\}$

If β converges faster than $\alpha,$ then one can compute an initial segment of β from that of $\alpha.$

This argument does not work for weakly computable reals.

Monotonically computable reals

Definition 18 (Rettinger et al. 2001)

 $\alpha \in \mathbb{R}$ is k-monotonically computable if, $(a_n) \to \alpha$ such that

$$k \cdot |\alpha - a_n| \ge |\alpha - a_m|$$

for any m > n.

 α is m.c. if it is k-m.c. for some k > 0.

Once one of approximations is close, then the remaining approximations can not be too far.

Monotonically computable reals

 $\alpha \in \mathbb{R}$ is 1-m.c. if and only if it is left-c.e. or right-c.e. (Rettinger et al. 2001) Any m.c. real is weakly computable. (Rettinger et al. 2001) For $c_1 > c_2 > 1$, there exists a real such that it is c_1 -m.c. but not c_2 -m.c. (Rettinger and Zheng 2003) Some related results

Strong K implies Strong Solovay

Fact 19

Let α, β be m.c. reals. Then,

 $\alpha \ll_K \beta \Rightarrow \alpha \ll_S \beta.$

Kenshi Miyabe (Meiji University)

Subclasses of the weakly computable reals 9 June,

9 June, 2022 CCR 2022 @ INI & Online 31 / 32

Thank you for listening.

