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Joint work with Masahiro Kumabe (Open Univ.) and Toshio Suzuki (Tokyo
Metropolitan Univ.).

I talked about the same topic at NUS last June. I will focus on a different proof
this time.
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Goal

We give some new characterizations of Solovay reducibility for weakly computable
reals.

1. By upper and lower semi-computable Lipschitz functions.
2. By Turing reduction with bounded use with respect to the signed-digit

representation.

“Solovay reducibility” is well-behaved even outside of left-c.e. reals!!
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Solovay reducibility

Computability of reals

α ∈ R is computable if ∃(an)n, comp, |an − α| < 2−n for all n ∈ ω.

α ∈ R is left-c.e. if ∃(an)n, comp., increasing, converging to α

α ∈ R is weakly computable (d.c.e., d.l.c.e.)
if ∃(an)n, comp.

∑
n |an+1 − an| < ∞, converging to α,

or equivalently if α = β − γ for left-c.e. reals β, γ.

EC ( LC ( WC.
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Solovay reducibility
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Solovay reducibility

Solovay reducibility for left-c.e. reals

Definition 1 (Solovay 1970s)
Let α, β ∈ LC. α is Solovay reducible to β, denoted by α ≤S β, if ∃(an)n, (bn)n,
comp., increasing, converging to α, β and ∃c ∈ ω such that

α− an < c(β − bn).

If one has a good approximation of β from below, then one can compute a good
approximation of α.

Theorem 2 (Kučera and Slaman 2001 with some other results)
A left-c.e. real β is Martin-Löf random if and only if it is Solovay complete in
left-c.e. reals, that is, α ≤S β for all left-c.e. reals α.
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Solovay reducibility
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Solovay reducibility

Solovay reducibility for weakly computable reals

Definition 3 (Zheng and Rettinger 2004)
Let α, β ∈ WC. α is Solovay reducible to β, denoted by α ≤S β, if
∃(an)n, (bn)n, comp., converging to α, β and ∃c ∈ ω such that

|α− an| < c(|β − bn|+ 2−n).

(an)n, (bn)n need not be increasing
The definition also works for limit computable reals (=computably approximable
reals), but we focus on weakly computable reals for simplicity.

Proposition 4 (Rettinger and Zheng 2005)
If a weakly computable real is ML-random, then it is left-c.e. or right-c.e.
A weakly computable real β is Martin-Löf random if and only if it is Solovay
complete in weakly computable reals.

Thus, Solovay is complete if and only if left-c.e. ML-random (Ω) or right-c.e.
ML-random(−Ω).
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Solovay reducibility
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Solovay reducibility

Question

Question 5
What does it mean for one real number to be more random than another number?

The original Solovay reducibility is well-behaved within left-c.e. reals.
The Solovay reducibility by Zheng and Rettinger is well-behaved within weakly
computable reals.
Is there a reducibility such that

1. it has many good properties like Solovay reducibility,
2. it is well-behaved for all reals.
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Lipschitz function

Solovay reducibility via Lipschitz functions

f : R → R is Lipschitz if there exists a constant L ∈ R such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y. If f is C1 in a closed interval, then it is Lipschitz.

Proposition 6 (Kumabe, Miyabe, Mizusawa, and Suzuki 2020;
Theorem 4.2)
Let α, β be left-c.e. reals. Then α ≤S β if and only if there exists a computable
non-decreasing Lipschitz function f whose domain is (−∞, β) and
limx→β−0 f(x) = α.
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Lipschitz function

Solovay reducibility via Lipschitz functions
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Lipschitz function

For weakly computable reals

Definition 7
A function interval is the pair of two functions f and h with f(x) ≤ h(x) for all
x ∈ R. A function interval (f, h) is semi-computable if f is lower semi-computable
and h is upper semi-computable.

Theorem 8
Let α, β ∈ WC. Then, α ≤S β if and only if there exist a semi-computable
function interval (f, h) such that

1. f, h are both Lipschitz functions,
2. f(β) = h(β) = α.
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Lipschitz function

For weakly computable reals
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Lipschitz function

Cauchy-type characterization

For left-c.e. reals α, β, α ≤S β if and only if there exists non-decreasing
computable sequences (an)n and (bn)n converging to α and β, respectively, and
q ∈ ω such that

(∀n)an+1 − an < q(bn+1 − bn).

Proposition 9
For weakly computable reals α, β, the relation α ≤S β holds if and only if there
exist computable sequences (an)n and (bn)n converging to α and β respectively
and q ∈ ω such that

(∀k, n ∈ ω)[k < n ⇒ |an − ak| < q · (|bn − bk|+ 2−k)]

We do not know any adjacent version of Solovay reducibility for weakly
computable reals.
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Lipschitz function

Proof idea

The “if” direction follows by letting n → ∞.
For the “only if” direction, we can always find such subsequences.
Suppose that we have

|α− ak| < c(|β − bk|+ 2−k).

For all sufficiently large n, the desired property holds for all previous terms.
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Lipschitz function

Proof idea

The Cauchy-type characterization states that

(∀k, n)[k < n ⇒ ak − q|bn − bk| − 2−k < an < ak + q|bn − bk|+ 2−k].

Inspired from this, we define functions f and h as follows:
(a) f(x) = supn∈ω(an − q|x− bn| − 2−n),
(b) h(x) = infn∈ω(an + q|x− bn|+ 2−n).
Then, we can show that
I f is lower semi-computable and h is upper semi-computable,
I f(x) ≤ h(x) for all x ∈ R,
I f, h are both Lipschitz functions,
I f(β) = h(β) = α.
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Lipschitz function

Variants

An open interval I = (a, b) is c.e. if a is a right-c.e. real and b is a left-c.e. real.

Definition 10 (cL-open reducibility)
For α, β ∈ R, α is computably-Lipschitz-reducible to β on a c.e. open interval,
denoted by α ≤op

cL β, if there exists a Lipschitz computable function f on a c.e.
open interval I such that limx∈I→β f(x) = α.

Definition 11 (cL-local reducibility)
For α, β ∈ R, α is computably-Lipschitz-reducible to β locally, denoted by
α ≤loc

cL β, if there exists a locally Lipschitz computable function f such that
f(β) = α.
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Lipschitz function

Variants

Proposition 12
For weakly computable reals α, β, we have

α ≤loc
cL β ⇒ α ≤op

cL β ⇒ α ≤S β.

For left-c.e. reals α, β, α ≤op
cL β if and only if α ≤S β.
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Lipschitz function

Separation

Theorem 13
There exist left-c.e. reals α, β such that α ≤op

cL β but α 6≤loc
cL β.

Theorem 14
There exist α, β ∈ WC such that α ≤S β but α 6≤op

cL β.
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Signed-digit representation

cL-reducibility

It would be desirable that Solovay reducibility can be characterized via Turing use
bounds like tt and wtt.

Definition 15 (Downey, Hirschfeldt, and LaForte 2004)
Let α, β ∈ 2ω. Then, α is computably Lipschitz reducible to β, denoted by
α ≤cL β, if ∃Φ: Turing functional s.t.
I α = Φ(β),
I use(Φ, β, n) ≤ n+O(1).

Solovay reducibility requires us to compute 2−n-approximation of α from
2−n−O(1)-approximation of β. In this sense, these reducibilities are similar but,
unfortunately, incomparable (see Theorem 9.1.6 and 9.10.1 in Downey and
Hirschfeldt 2010).
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Signed-digit representation
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Signed-digit representation

signed-digit representation

The main reason for the difference between Solovay reducibility and cL-reducibility
is that the reals change continuously, while the binary sequences change discretely.
A similar problem occurs in computable analysis, where we use the signed-digit
representation for reals.

Theorem 16 (Kumabe, M., Suzuki)
Let α, β ∈ WC. α ≤S β if and only if it ∃g: partial comp. func. s.t.
I α = g(β),
I g is (ρ, ρ)-computable with use bound H(n) = n+O(1),

where ρ is the signed-digit representation.

We will define the sd-representation later.
Replacing the binary representation in cL-reducibility with the sd-representation
characterizes Solovay reducibility!
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Signed-digit representation

Solovay reducibility for all reals

This feature is pleasing in several ways.
I We have Solovay reducibility for all reals by redefining it via the use bound

w.r.t. sd-representation.
I The condition uses use bound like many other reducibilities in computability

theory.
I This clarifies the relation between Solovay reducibility and Lipschitz functions.
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Signed-digit representation

Definition of sd-representation

The usual binary representation:

p ∈ 2ω, ρbin(p) =

∞∑
n=0

p(n)2−n−1 ∈ [0, 1].

Even if α ∈ [a, b] with b− a < 2−n, we can not determine p � n.

Definition 17
Let Σ = {0,±1}. The signed-digit representation ρsd is defined by

p ∈ Σω, ρsd(p) =

∞∑
n=0

p(n)2−n−1 ∈ [−1, 1].

The sd-representation can be extended to all reals.
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Signed-digit representation

Realization

Definition 18
A partial computable f :⊆ R → R is (ρ, ρ)-computable if ∃Φ :⊆ Σω → Σω:
Turing functional such that

(∀p ∈ Σω)[ρ(p) = x ∈ dom(f) ⇒ ρ(Φ(p)) = f(x)].

We also say Φ realizes f .
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Signed-digit representation
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Signed-digit representation

Realization

Reproduce
Let α, β ∈ WC. α ≤S β if and only if ∃g: partial comp. func. s.t.
I α = g(β),
I g is (ρ, ρ)-computable with use bound H(n) = n+O(1),

where ρ is the signed-digit representation.

Here, g is defined at β but may not be defined at other reals.
For all ρ-representations B of β, Φ computes some ρ-representation A of α.
Furthermore, A � n can be computed from B � H(n).
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Signed-digit representation

Further results

I When replacing Lipschitz by Hölder, then we have quasi Solovay reducibility,
where the use bound is H(n) = pn+O(1) for some p ∈ ω.

I When defining strong Slovay reducibility by limn
α−an

β−bn
= 0, then we have

I The derivative of f at β is 0.
I The use bound H(n) < n− d for any d.

Thank you!
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