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We compute the probability of the next bit from a finite sequence of 0 and
1.



Abstract

1. The theory of inductive inference usually considers an optimal c.e.

semi-measure because no computable measure is optimal.
2. We introduce reducibility among measures by domination.
3. Domination means generality.

4. We give the convergence rate of a sufficiently general measure.
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Setting

Setting

Cantor space: {0, 1}

p: unknown measure on {0, 1}, model measure

X = X1 XoX3--- € {0, l}N: random sequence w.r.t.

The task is to predict the conditional probability of the next bit given
initial segments X ,:

(k| X<pn) = m for k € {0,1}.

Kenshi Miyabe (Meiji University) Computable prediction 6 Nov, 2023






Setting

Optimal prediction

¢:{0,1}* — [0,1] is called a semi-measure if

§(e) <1, §(o) = £(00) +£(01)

for all o € {0, 1} where ¢ is the empty string.

£€:4{0,1}* — [0, 1] is called c.e.(or lower semicomputable) if if {(o) are
left-c.e. uniformly in o.

A c.e. semi-measure £ is called optimal if it dominates all c.e.
semi-measures, that is, for every c.e. semi-measure p, there exists ¢ € N

such that
(o) <c-&(o)

for all o € {0,1}*. An optimal c.e. semi-measure exists.
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Setting

Solomonoff's result

w: model measure, £: prediction measure

Theorem 1 (Solomonoff 1960s-70s)

&: optimal c.e. semi-measure, |1: computable model measure, X :

pu-random sequence
|€(k| X <n) — u(k|X<n)| = 0 (n — o0) for each k € {0,1}

ML-randomness is not sufficient (Hutter and Muchnik 2007), but

2-randomness is sufficient.
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Setting

Strengths and weaknesses

Strengths:

1. The optimal measure seems to accomplish the so-called artificial

general intelligence!
Weaknesses:

1. No computable prediction is optimal. Thus, this does not make any

sense in reality.

2. The convergence rate can be very slow.
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General prediction

Domination

£ dominates v if
(3c € N)(Vo € {0, 1} (0) < c-£(0)

Optimal semi-measures perform well in prediction.

Question 2

If £ dominates p, does it mean that & performs better than y in prediction?

If so, in what sense?
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General prediction

KL-divergence

u,&: measures on {0, 1}
Kullback-Leibler divergence of pu w.r.t. £ is defined by

(k)
d(nll €) = u(k) In 220
2 M)
> do(p || &) = d(u(- | o)[|E( | o)),

> Dy(p || &) = >2k—1 Ex~puldx_, (1ll€)],

> Doo(p || §) = limp—00 Dn(p || €).
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General prediction

KL-divergence and convergence

Suppose Do (1t || ) < oo. Then,
(k| X<n) — v(k|X<n)] = 0

as n — oo almost surely. Thus, the finiteness of KL-divergence is a

sufficient condition for the convergence.
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General prediction

Domination and convergence

Theorem 3
The following are equivalent for &, v:

> ¢ dominates v.
» There exists ¢ € N such that, for every measure p, we have

Doo(p 1] €) < Doo(p || v) +c.

The sum of expected errors of & is smaller than that of v up to a constant.
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General prediction

Remark

» Doo(p || €) is equal to the usual KL-divergence of p w.r.t. . A finite
version is called the chain-rule for the KL-divergence. | couldn’t find
an infinite version in the literature.

» If 4 and £ are computable, then Do (u || €) is left-c.e. or co.

» domination = absolute continuous. Kakutani equivalence theorem is

about absolute continuity. The above claim is its domination version.
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Convergence rate

Sufficiently good function

Kolmogorov complexity is not computable. No computable function f

satisfies

f(n) < K(n 22 Fn)

However, there exists a computable function such that
f(n) < K(n)+0(1) io, Y 277 <1,
n

which is called a Solovay function.

Such a function is sufficiently good in an approximation of K.
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Convergence rate

Sufficiently general prediction

P(n) holds for a sufficiently large n € N if there exists N € N such that
P(n) for all n > N.

P(&) holds for a sufficiently general computable measure ¢ if there exists a

computable measure v such that P(§) holds for all computable measures £

dominating v.
> We are talking about computable measures.

» We can prove a computable version of Solomonoff’s result.
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Optimal measure

More general




Convergence rate

Main result

Theorem 4

. computable model measure, &: sufficiently general prediction measure
Then,

Doo(p][€) < 00

and is Martin-L6f left-c.e. real.

Remark: ML-randomness w.r.t. the Lebesgue measure.
Fast convergence because the sum of the expected errors converges.

Slow convergence because the sum is ML-random.
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Convergence rate

Proof sketch

Steps of the proof of ML-randomness of D (p/|€).
1. Construct v which is close to u but slightly different.
2. Show that D (u||v) is ML-random.
3. If £ dominates v, then Do (u]|€) — Doo(p]|v) is left-c.e.
4. Hence, Do (p)|€) is ML-random.
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Convergence rate

Construction of v

zn: computable seq. of positive rationals s.t. s = > 2z, < 1is ML-random
7 € {0,13N: 0 € Z°, u(Z2°) =0

wu(o) if o] <n
w(T)1z- if |o|>n, T=0<y,

v= Z Znpn + (1 — s)u (computable)
n

Wn divides the weights the same as p until the n-th bit.

Afterward, p, puts the weight on a sequence orthogonal to p.
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Convergence rate

ML-randomness

Consider the Radon-Nikodym derivative

dﬁ_ 1
dv  1—s

Since s is ML-random, so is D(u||v).

Furthermore, ‘;—’Ij is a constant function and

D(ulle) = D(llv) + - D(vle),

which implies ML-randomness of D(ul|€).
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Convergence rate

Some corollaries

ML-randomness of KL-divergence implies ML-randomness for other

distances of measures.
> lp(p, &) = Zke{o,u (k) — &(k)P

> Lp(,U,{) = ZEXNM[E}%XGc(M?g)]
If there exists p such that L,(u,&) is ML-randomness, then such p is

unique. Let R(u, &) be the p.

When = 14 is a Dirac measure, then R(u,§) = 1 for sufficiently general
£.

When (1 is separated (infy, , pu(k|o) > 0), then R(p,&) = 2 for sufficiently

general &.
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Convergence rate

Oscillation

In particular, when pt = 14 is a Dirac measure, we have
—log(1 — £(Au|Acn)) = K" (n)

where K"(n) is the time-bounded Kolmogorov complexity.

Thus, the error can be evaluated completely in some sense.
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Convergence rate

Nicod's criterion

The sunrise problem asks “What is the probability that the sun will rise
tomorrow?”
Nicod's criterion claims that a hypothesis of the form “All A are B" is

confirmed (so the probability should be greater) by further instances that
are A and B.

However, the previous result violates this claim.

How should we understand this??
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Convergence rate

Bernoulli measures

Let i be a Bernoulli measure.

We restrict £ to be a linear combination of Bernoulli measures.

Definition 6
Let B be the class of prediction measures p satisfying the following:

1. wy, €[0,1] such that >~ w, =1,

2. pn € [0,1] such that (p,), is a sequence of uniformly computable

reals,

3. w=>3 .2, wyBp, is a computable measure.

For a computable real p, Y {w, : p, = p} is a right-c.e. real.
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Convergence rate

Bernoulli measures

Theorem 7
1. If X € {ON 1N}, then £(X,, | X<,,) is monotonically increasing to 1.
2. Doo(By || €) is a finite left-c.e. ML-random real for sufficientlly

general &.

The constructed v in 2 should be in B.

Nicod's criterion may implicitly assume independence.
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Convergence rate

Summary

1. We introduced the notion of sufficient generality by domination.

Domination roughly means better prediction.

2. The sum of expected errors of sufficient general prediction is left-c.e.

ML-random real, which is rather different from the case of optimal
prediction.

3. The rate of convergence can be studied through ML-randomness.
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Related work

1. Statistical learning theory: usually parametrized model measures,

independence

2. (C)PAC learning: usually studies learnability in polynomial time by

topological reasons, independence

3. Algorithmic probability: computable model measures,

non-independence, restricted to a space of sequences of alphabets
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Thank you for listening.

\/ BRIEKE

MEIJI UNIVERSITY
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