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by ChatGPT
We compute the probability of the next bit from a finite sequence of 0 and

1.



Abstract

1. The theory of inductive inference usually considers an optimal c.e.
semi-measure because no computable measure is optimal.

2. We introduce reducibility among measures by domination.

3. Domination means generality.

4. We give the convergence rate of a sufficiently general measure.
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Setting

Setting

Cantor space: {0, 1}N

µ: unknown measure on {0, 1}N, model measure
X = X1X2X3 · · · ∈ {0, 1}N: random sequence w.r.t. µ
The task is to predict the conditional probability of the next bit given
initial segments X<n:

µ(k|X<n) =
µ(X<nk)

µ(X<n)
for k ∈ {0, 1}.
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Setting

Optimal prediction

ξ : {0, 1}∗ → [0, 1] is called a semi-measure if

ξ(ε) ≤ 1, ξ(σ) ≥ ξ(σ0) + ξ(σ1)

for all σ ∈ {0, 1}N where ε is the empty string.
ξ : {0, 1}∗ → [0, 1] is called c.e.(or lower semicomputable) if if ξ(σ) are
left-c.e. uniformly in σ.
A c.e. semi-measure ξ is called optimal if it dominates all c.e.
semi-measures, that is, for every c.e. semi-measure µ, there exists c ∈ N
such that

µ(σ) ≤ c · ξ(σ)

for all σ ∈ {0, 1}∗. An optimal c.e. semi-measure exists.
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Setting

Solomonoff’s result

µ: model measure, ξ: prediction measure

Theorem 1 (Solomonoff 1960s-70s)
ξ: optimal c.e. semi-measure, µ: computable model measure, X:
µ-random sequence

|ξ(k|X<n)− µ(k|X<n)| → 0 (n → ∞) for each k ∈ {0, 1}

ML-randomness is not sufficient (Hutter and Muchnik 2007), but
2-randomness is sufficient.
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Setting

Strengths and weaknesses

Strengths:

1. The optimal measure seems to accomplish the so-called artificial
general intelligence!

Weaknesses:

1. No computable prediction is optimal. Thus, this does not make any
sense in reality.

2. The convergence rate can be very slow.
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General prediction

Domination

ξ dominates ν if

(∃c ∈ N)(∀σ ∈ {0, 1}N)ν(σ) ≤ c · ξ(σ)

Optimal semi-measures perform well in prediction.

Question 2
If ξ dominates µ, does it mean that ξ performs better than µ in prediction?
If so, in what sense?
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General prediction

KL-divergence

µ, ξ: measures on {0, 1}
Kullback-Leibler divergence of µ w.r.t. ξ is defined by

d(µ || ξ) =
∑

k∈{0,1}

µ(k) ln
µ(k)

ξ(k)

I dσ(µ || ξ) = d(µ(· | σ)||ξ(· | σ)),

I Dn(µ || ξ) =
∑n

k=1EX∼µ[dX<k
(µ||ξ)],

I D∞(µ || ξ) = limn→∞Dn(µ || ξ).
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General prediction

KL-divergence and convergence

Suppose D∞(µ || ξ) < ∞. Then,

|µ(k|X<n)− ν(k|X<n)| → 0

as n → ∞ almost surely. Thus, the finiteness of KL-divergence is a
sufficient condition for the convergence.
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General prediction

Domination and convergence

Theorem 3
The following are equivalent for ξ, ν:

I ξ dominates ν.

I There exists c ∈ N such that, for every measure µ, we have
D∞(µ || ξ) ≤ D∞(µ || ν) + c.

The sum of expected errors of ξ is smaller than that of ν up to a constant.
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General prediction

Remark

I D∞(µ || ξ) is equal to the usual KL-divergence of µ w.r.t. ξ. A finite
version is called the chain-rule for the KL-divergence. I couldn’t find
an infinite version in the literature.

I If µ and ξ are computable, then D∞(µ || ξ) is left-c.e. or ∞.

I domination ⇒ absolute continuous. Kakutani equivalence theorem is
about absolute continuity. The above claim is its domination version.
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Convergence rate

Sufficiently good function

Kolmogorov complexity is not computable. No computable function f

satisfies
f(n) ≤ K(n) +O(1),

∑
n

2−f(n) < 1

However, there exists a computable function such that

f(n) ≤ K(n) +O(1) i.o.,
∑
n

2−f(n) < 1,

which is called a Solovay function.
Such a function is sufficiently good in an approximation of K.
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Convergence rate

Sufficiently general prediction

P (n) holds for a sufficiently large n ∈ N if there exists N ∈ N such that
P (n) for all n > N .
P (ξ) holds for a sufficiently general computable measure ξ if there exists a
computable measure ν such that P (ξ) holds for all computable measures ξ

dominating ν.

I We are talking about computable measures.

I We can prove a computable version of Solomonoff’s result.
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Convergence rate

Main result

Theorem 4
µ: computable model measure, ξ: sufficiently general prediction measure
Then,

D∞(µ||ξ) < ∞

and is Martin-Löf left-c.e. real.

Remark: ML-randomness w.r.t. the Lebesgue measure.
Fast convergence because the sum of the expected errors converges.
Slow convergence because the sum is ML-random.
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Convergence rate

Proof sketch

Steps of the proof of ML-randomness of D∞(µ||ξ).

1. Construct ν which is close to µ but slightly different.

2. Show that D∞(µ||ν) is ML-random.

3. If ξ dominates ν, then D∞(µ||ξ)−D∞(µ||ν) is left-c.e.

4. Hence, D∞(µ||ξ) is ML-random.
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Convergence rate

Construction of ν

zn: computable seq. of positive rationals s.t. s =
∑

n zn < 1 is ML-random
Zσ ∈ {0, 1}N: σ ∈ Zσ, µ(Zσ) = 0

µn(σ) =

µ(σ) if |σ| ≤ n

µ(τ)1Zτ if |σ| > n, τ = σ≤n

ν =
∑
n

znµn + (1− s)µ (computable)

µn divides the weights the same as µ until the n-th bit.
Afterward, µn puts the weight on a sequence orthogonal to µ.
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Convergence rate

ML-randomness

Consider the Radon-Nikodym derivative

dµ

dν
=

1

1− s

Since s is ML-random, so is D(µ||ν).
Furthermore, dµ

dν is a constant function and

D(µ||ξ) = D(µ||ν) + 1

1− s
·D(ν||ξ),

which implies ML-randomness of D(µ||ξ).
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Convergence rate

Some corollaries

ML-randomness of KL-divergence implies ML-randomness for other
distances of measures.
I `p(µ, ξ) =

∑
k∈{0,1} |µ(k)− ξ(k)|p

I Lp(µ, ξ) =
∑

EX∼µ[`p,X<k
(µ, ξ)]

If there exists p such that Lp(µ, ξ) is ML-randomness, then such p is
unique. Let R(µ, ξ) be the p.

Theorem 5
When µ = 1A is a Dirac measure, then R(µ, ξ) = 1 for sufficiently general
ξ.
When µ is separated (infk,σ µ(k|σ) > 0), then R(µ, ξ) = 2 for sufficiently
general ξ.
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Convergence rate

Oscillation

In particular, when µ = 1A is a Dirac measure, we have

− log(1− ξ(An|A<n)) ≈ Kh(n)

where Kh(n) is the time-bounded Kolmogorov complexity.
Thus, the error can be evaluated completely in some sense.
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Convergence rate

Nicod’s criterion

The sunrise problem asks “What is the probability that the sun will rise
tomorrow?”
Nicod’s criterion claims that a hypothesis of the form “All A are B” is
confirmed (so the probability should be greater) by further instances that
are A and B.

However, the previous result violates this claim.
How should we understand this??
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Convergence rate

Bernoulli measures

Let µ be a Bernoulli measure.
We restrict ξ to be a linear combination of Bernoulli measures.

Definition 6
Let B be the class of prediction measures µ satisfying the following:

1. wn ∈ [0, 1] such that
∑

nwn = 1,

2. pn ∈ [0, 1] such that (pn)n is a sequence of uniformly computable
reals,

3. µ =
∑∞

n=1wnBpn is a computable measure.

For a computable real p,
∑

n{wn : pn = p} is a right-c.e. real.
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Convergence rate

Bernoulli measures

Theorem 7
1. If X ∈ {0N, 1N}, then ξ(Xn | X<n) is monotonically increasing to 1.

2. D∞(Bp || ξ) is a finite left-c.e. ML-random real for sufficientlly
general ξ.

The constructed ν in 2 should be in B.
Nicod’s criterion may implicitly assume independence.
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Convergence rate

Summary

1. We introduced the notion of sufficient generality by domination.
Domination roughly means better prediction.

2. The sum of expected errors of sufficient general prediction is left-c.e.
ML-random real, which is rather different from the case of optimal
prediction.

3. The rate of convergence can be studied through ML-randomness.
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Convergence rate

Related work

1. Statistical learning theory: usually parametrized model measures,
independence

2. (C)PAC learning: usually studies learnability in polynomial time by
topological reasons, independence

3. Algorithmic probability: computable model measures,
non-independence, restricted to a space of sequences of alphabets
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Convergence rate

Thank you for listening.
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