# Strong Solovay reducibility

宮部賢志 (Kenshi Miyabe)

明治大学 (Meiji University)

2023年12月12日 (12 Dec, 2023)

証明論と計算論の最前線@RIMS

Partly joint work with Masahiro Kumabe (Open Univ.) and Toshio Suzuki (TMU).

#### **Abstract**

- 1. We introduce the new notion called "strong Solovay reducibility".
- 2. This notion induces many real closed fields.
- 3. We see some basic properties.
- 4. We give its characterization via differentiable functions.

#### **Definition**

 ${f CA}$ : the set of all computably approximable reals or equivalently  $\Delta_2^0$   ${
m CS}(\alpha)$ : the set of all computable sequence of rationals converging to  $\alpha$ 

#### Definition 1

Let  $\alpha, \beta \in \mathbf{CA}$ .  $\alpha$  is strongly Solovay reducible to  $\beta$ , denoted by  $\alpha \ll_S \beta$ , if there exist  $(a_n)_n \in \mathrm{CS}(\alpha)$  and  $(b_n)_n \in \mathrm{CS}(\beta)$  such that

$$\lim_{n \to \infty} \frac{|\alpha - a_n|}{|\beta - b_n| + 2^{-n}} = 0.$$

 $\alpha \ll_S \beta$  roughly means that the convergence to  $\alpha$  is much faster than that to  $\beta.$ 

### Table of Contents

Motivation

Basic properties

Differentiability

#### Real closed field

An ordered field  $\mathcal{F}$  is called a real closed field if

- $\blacktriangleright$  every positive element in  $\mathcal F$  has a square root in  $\mathcal F$ ,
- ightharpoonup every odd-degree polynomial with coefficients in  $\mathcal{F}$  has a root in  $\mathcal{F}$ .

## Examples

### Example 2

- 1.  $\mathbb{R}$
- 2. the real algebraic numbers (real roots of polynomials of rational coefficients)
- 3. the computable reals (Rice 1954, Grzegorczyk 1955)
- 4. the weakly computable reals (Ng 2005, Raichev 2005)
- 5. the non-random weakly computable reals (Miller 2017)
- 6. the primitive recursive reals (due to Peter Hertling, see Selivanov and Selivanova 2021)
- 7. the nearly computable reals (Hertling and Janicki 2023)

# Weakly computable reals

A real  $\alpha \in \mathbb{R}$  is computable if there is a computable sequence  $(a_n)_n$  of rationals such that  $|a_n - a_{n-1}| \le 2^{-n}$  for all  $n \ge 1$  and  $\lim_n a_n = \alpha$ . A real  $\alpha \in \mathbb{R}$  is left-c.e. if there is a computable sequence  $(a_n)_n$  of rationals such that  $a_{n-1} \leq a_n$  for all  $n \geq 1$  and  $\lim_n a_n = \alpha$ . A real  $\alpha \in \mathbb{R}$  is weakly computable if there is a computable sequence  $(a_n)_n$  of rationals such that  $\sum_n |a_n - a_{n-1}| < \infty$  and  $\lim_n a_n = \alpha$ . A real is weakly computable if and only if it is the difference of two left-c.e. reals (Ambos-Spies, Weihrauch, and Zheng 2000). Thus weakly computable reals are sometimes called d.c.e. reals.



# Lipschitz continuity

## Lemma 3 (Hertling and Janicki 2023 following Raichev 2005)

If a subset  $K \subseteq \mathbb{R}$  contains a number  $x_0 \neq 0$  and is closed under Lipschitz continuous computable functions  $f : \subseteq \mathbb{R}^k \to \mathbb{R}$  with open domain  $dom(f) \subseteq \mathbb{R}^k$ , k arbitrary, then K is a real closed subfield of  $\mathbb{R}$ .

#### closed under

- 1. taking a root of a polynomial,
- 2. Lipschitz continuous computable functions,
- 3. Solovay reducibility.

# Solovay reducibility

### Definition 4 (Solovay 1975, Zheng and Rettinger 2004)

Let  $\alpha, \beta \in \mathbf{CA}$ .  $\alpha \leq_S \beta$  if there exist  $(a_n)_n \in \mathrm{CS}(\alpha)$ ,  $(b_n)_n \in \mathrm{CS}(\beta)$ , and  $c \in \omega$  such that

$$|\alpha - a_n| < c(|\beta - b_n| + 2^{-n})$$

for all  $n \in \omega$ .

 $\alpha \leq_S \beta$  roughly means that the convergence to  $\beta$  is not faster than that to  $\alpha$ .

# Solovay by Lipschitz

### Proposition 5 (Kumabe et al. 2020)

Let  $\alpha, \beta \in \mathbf{LC}$ .  $\alpha \leq_S \beta$  if and only if there exists an increasing Lipschitz computable function  $f: (-\infty, \beta) \to (-\infty, \alpha)$  such that  $\lim_{x \to \beta - 0} f(x) = \alpha$ .

# Solovay by Lipschitz

A function interval is the pair of two functions f and h with  $f(x) \leq h(x)$  for all  $x \in \mathbb{R}$ . A function interval (f,h) is semi-computable if f is lower semi-computable and h is upper semi-computable.

### Theorem 6 (Kumabe, Miyabe, and Suzuki submitted)

Let  $\alpha, \beta \in \mathbf{CA}$ .  $\alpha \leq_S \beta$  if and only if there exists a semi-computable function interval (f,h) such that

- 1. f, h are both Lipschitz functions,
- 2.  $f(\beta) = h(\beta) = \alpha$ .

# RCF by Solovay

Let 
$$S(\beta) = \{ \alpha \in \mathbf{CA} : \alpha \leq_S \beta \}.$$

#### Proposition 7

For every  $\beta \in \mathbf{CA}$ ,  $S(\beta)$  forms a real closed field.

 $S(\emptyset)$ : computable reals

 $S(\Omega)$ : weakly computable reals

 $\{\alpha \in \mathbf{WC} : \alpha <_S \Omega\}$ : non-random weakly computable reals

# Not RCF by strict Solovay

### Theorem 8 (Downey, Hirschfeldt, and Nies 2002)

Let  $\alpha$  be a non-computable non-ML-random left-c.e. real. Then, there are two non-computable left-c.e. reals  $\beta$  and  $\gamma$  such that  $\beta, \gamma <_S \alpha$  and  $\beta + \gamma = \alpha$ .

In particular, for such  $\alpha$ ,  $\{\gamma \in \mathbf{WC} : \gamma <_S \alpha\}$  does not form a real closed field.

### Non-random w.c. reals

### Theorem 9 (Demuth 1975)

Let  $\alpha, \beta \in \mathbf{LC}$ . Suppose that  $\alpha + \beta$  is ML-random. Then, at least one of  $\alpha$  and  $\beta$  is ML-random.

### Theorem 10 (Miller 2017)

The set of all non-ML-random weakly computable reals forms a real closed field.

#### Derivative

## Theorem 11 (Barmpalias and Lewis-Pye 2017)

Fix an ML-random left-c.e. real  $\Omega$  and its approximation  $(\Omega_s)_s$ . Let  $\alpha$  be a weakly computable real with approximation  $(\alpha_s)_s$  and let

$$\partial \alpha = \lim_{s \to \infty} \frac{\alpha - \alpha_s}{\Omega - \Omega_s}.$$

If  $\alpha$  is ML-random, then  $\partial \alpha$  exists independent from the approximation and not zero. If  $\alpha$  is not ML-random, then  $\partial \alpha = 0$ .

### Table of Contents

Motivation

Basic properties

Differentiability

#### Definition

 ${f CA}$ : the set of all computably approximable reals or equivalently  $\Delta_2^0$   ${
m CS}(lpha)$ : the set of all computable sequence of rationals converging to lpha

#### Definition 12

Let  $\alpha, \beta \in \mathbf{CA}$ .  $\alpha$  is strongly Solovay reducible to  $\beta$ , denoted by  $\alpha \ll_S \beta$ , if there exist  $(a_n)_n \in \mathrm{CS}(\alpha)$  and  $(b_n)_n \in \mathrm{CS}(\beta)$  such that

$$\lim_{n \to \infty} \frac{|\alpha - a_n|}{|\beta - b_n| + 2^{-n}} = 0.$$

 $\alpha \ll_S \beta$  roughly means that the convergence to  $\alpha$  is much faster than that to  $\beta.$ 

# RCF by strong Solovay

## Proposition 13

 $S(\ll\Omega)$  is equal to the set of all non-ML-random weakly computable reals.

### Proposition 14

 $S(\ll \beta)$  forms a real closed field for every  $\beta \in \mathbf{CA}$ .

#### Remark

In Barmpalias and Lewis-Pye's result, the limit does not depend on approximations.

In the definition of strong Solovay reducibility, we only require such an approximation to exist.

# Solovay degree invariant

## Proposition 15

Let  $\alpha, \beta, \gamma \in \mathbf{CA}$ .

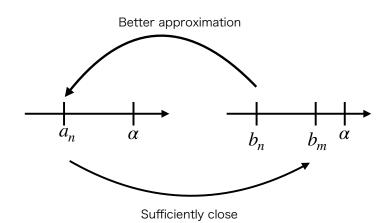
- 1. If  $\alpha \ll_S \beta$ , then  $\alpha \leq_S \beta$ .
- 2. If  $\alpha \leq_S \beta$  and  $\beta \ll_S \gamma$ , then  $\alpha \ll_S \gamma$ .
- 3. If  $\alpha \ll_S \beta$  and  $\beta \leq_S \gamma$ , then  $\alpha \ll_S \gamma$ .

Thus,  $\ll_S$  is Solovay degree invariant.

# Reflexivity

### Proposition 16

Let  $\alpha \in \mathbf{CA}$ . Then,  $\alpha \ll_S \alpha$  if and only if  $\alpha$  is computable.



### Table of Contents

Motivation

Basic properties

Differentiability

#### Characterization via derivative

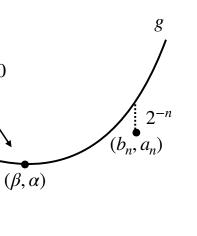
#### Theorem 17

Let  $\alpha, \beta \in \mathbf{CA}$ . Then,  $\alpha \ll_S \beta$  if and only if there exist  $(a_n)_n \in \mathrm{CS}(\alpha)$ ,  $(b_n)_n \in \mathrm{CS}(\beta)$ , and a continuous function g such that

- 1. the derivative  $g'(\beta) = 0$ ,
- 2.  $|g(b_n) a_n| \le 2^{-n}$  for all n.

We can further impose the following condition:

▶ The function g is differentiable on the real line.



 $g'(\beta) = 0$ 

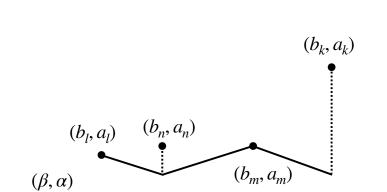
#### Remark

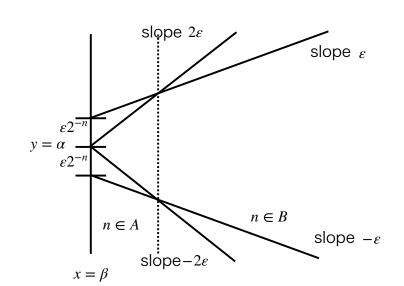
g need not be computable but  $a_n$  and  $g(b_n)$  should be close.

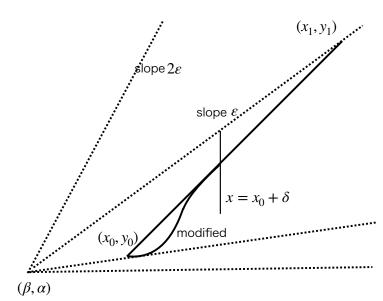
- strong Solovay: differentiable and zero derivative
- Solovay: Lipschitz continuous
- quasi Solovay: Hölder cotinuous

#### Question 18

Can we impose g to be  $C^1$ ?







#### Thank you for listening.



