Kenshi Miyabe (宮部賢志)

Meiji University

12 Mar 2024

CCR2024@Nagoya

Partly joint work with

- Masahiro Kumabe (Open Univ.)
- Toshio Suzuki (TMU)

- 1. Introduction to algorithmic randomness
- 2. Closed under "simple" operations
- 3. Strong Solovay reducibility

Table of Contents

• Introduction to algorithmic randomness

• Real closed field

• Strong Solovay reducibility

Consider sampling from the unit interval.

SLLN

Theorem 1 (Strong Law of Large Numbers, SLLN)

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X(k) = \frac{1}{2} \quad \text{with probability 1}$$

Here, X(k) is the k-th digit of the infinite binary expansion of $x \in [0, 1]$. The set of sequences that violate the SLLN has measure 0 and is covered by

$$\bigcap_{n\in\omega}U_n$$

where $(U_n)_n$ is a sequence of open sets with measure $\leq 2^{-n}$.

ML-randomness

A c.e. open set is an open set that has the form

$$U = \bigcup_{n} (a_n, b_n)$$

where $(a_n)_n$ and $(b_n)_n$ be a computable sequence of rationals.

Definition 2

A ML-test is a sequence $(U_n)_n$ of uniformly c.e. open sets such that

 $\mu(U_n) \leq 2^{-n}$, where μ is the Lebeasgue measure.

A real $x \in [0,1]$ is called ML-random if x is not covered by any ML-test, that is,

$$x \not\in \bigcap_n U_n.$$

Path-wise property

Proposition 3

Any ML-random real obeys the strong law of large numbers.

Many limit theorems can be precisely stated in the form: If a real is sufficiently random, then such-and-such property holds.

Halting probability

A concrete example of ML-random reals:

Example 4 (Halting probability)

$$\Omega = \sum_{\sigma \in \operatorname{dom}(U)} 2^{-|\sigma|}$$

is a left-c.e. ML-random real.

Here, $U:\subseteq 2^{<\omega}\to 2^{<\omega}$ is the universal prefix-free machine.

- It is difficult to capture.
- It can be approximated computably.

Counterintuitive!!

c.a. reals

A real x is called computable if there exists a computable sequence $I_n = (a_n, b_n)$ of intervals with rational endpoints such that $|b_n - a_n| < 2^{-n}$.

A real x is called left-c.e. if there exists an increasing computable sequence a_n of rationals such that

$$x = \lim_{n} a_n.$$

computably approximable

3-rondom

2-random

weakly computable

Computable

1-rondom

Weakly computable reals

A real $\alpha \in \mathbb{R}$ is weakly computable if there is a computable sequence $(a_n)_n$ of rationals such that $\sum_n |a_n - a_{n-1}| < \infty$ and $\lim_n a_n = \alpha$. A real is weakly computable if and only if it is the difference of two left-c.e. reals (Ambos-Spies, Weihrauch, and Zheng 2000). Thus weakly computable reals are sometimes called d.c.e. reals. A real $\alpha \in \mathbb{R}$ is computable approximable if there is a computable sequence $(a_n)_n$ of rationals such that $\lim_n a_n = \alpha$.

Solovay reducibility

Definition 5 (Solovay 1975, Zheng and Rettinger 2004)

Let $\alpha, \beta \in \mathbf{CA}$. $\alpha \leq_S \beta$ if there exist $(a_n)_n \in \mathrm{CS}(\alpha)$, $(b_n)_n \in \mathrm{CS}(\beta)$, and $c \in \omega$ such that

$$|\alpha - a_n| < c(|\beta - b_n| + 2^{-n})$$

for all $n \in \omega$.

 $\alpha \leq_S \beta$ roughly means that the convergence to β is not faster than that to α .

This is a reducibility that measures the approximability of reals.

Solovay reducibility and randomness

Proposition 6

Let $\alpha, \beta \in \mathbf{CA}$. $\alpha \leq_S \beta$ implies $\alpha \leq_K \beta$, that is,

 $K(\alpha \restriction n) < K(\beta \restriction n) + O(1)$

where K is the prefix-free Kolmogorov complexity.

Theorem 7 (Kučera-Slaman theorem)

Let $\alpha \in \mathbf{WC}$. Then, α is ML-random if and only if it is Solovay complete in \mathbf{WC} .

Solovay reducibility measures the randomness of reals.

Table of Contents

Introduction to algorithmic randomness

Real closed field

• Strong Solovay reducibility

Closedness

Simple numbers with simple operations produce simple numbers.

the real algebraic numbers

Real closed field

An ordered field ${\mathcal F}$ is called a real closed field if

- every positive element in \mathcal{F} has a square root in \mathcal{F} ,
- every odd-degree polynomial with coefficients in \mathcal{F} has a root in \mathcal{F} .

Real closed field

Example 8

- 1. R
- 2. the real algebraic numbers (real roots of polynomials of rational coefficients)
- 3. the computable reals (Rice 1954, Grzegorczyk 1955)
- 4. the weakly computable reals (Ng 2005, Raichev 2005)
- 5. the non-random weakly computable reals (Miller 2017)
- 6. the primitive recursive reals (due to Peter Hertling, see Selivanov and Selivanova 2021)
- 7. the nearly computable reals (Hertling and Janicki 2023)

Main question

Are there good subsets of reals such that

- it forms a real closed field,
- it is related to randomness.

Use Solovay reducibility!!

RCF by Solovay

Let
$$S(\beta) = \{ \alpha \in \mathbf{CA} : \alpha \leq_S \beta \}.$$

Proposition 9

For every $\beta \in \mathbf{CA}$, $S(\beta)$ forms a real closed field.

$S(\emptyset)$: computable reals

- $S(\Omega)$: weakly computable reals
- $\{ \alpha \in \mathbf{WC} : \alpha <_S \Omega \}$: non-random weakly computable reals

Lipschitz continuity

Lemma 10 (Hertling and Janicki 2023 following Raichev 2005)

If a subset $K \subseteq \mathbb{R}$ contains a number $x_0 \neq 0$ and is closed under Lipschitz continuous computable functions $f :\subseteq \mathbb{R}^k \to \mathbb{R}$ with open domain $\operatorname{dom}(f) \subseteq \mathbb{R}^k$, k arbitrary, then K is a real closed subfield of \mathbb{R} .

closed under

- 1. taking a root of a polynomial,
- 2. Lipschitz continuous computable functions,
- 3. Solovay reducibility.

Solovay by Lipschitz

Proposition 11 (Kumabe et al. 2020)

Let $\alpha, \beta \in \mathbf{LC}$. $\alpha \leq_S \beta$ if and only if there exists an increasing Lipschitz computable function $f : (-\infty, \beta) \to (-\infty, \alpha)$ such that $\lim_{x \to \beta - 0} f(x) = \alpha$.

Solovay by Lipschitz

A function interval is the pair of two functions f and h with $f(x) \le h(x)$ for all $x \in \mathbb{R}$. A function interval (f, h) is semi-computable if f is lower semi-computable and h is upper semi-computable.

Theorem 12 (Kumabe, Miyabe, and Suzuki submitted)

Let $\alpha, \beta \in CA$. $\alpha \leq_S \beta$ if and only if there exists a semi-computable function interval (f, h) such that

1. f, h are both Lipschitz functions,

2. $f(\beta) = h(\beta) = \alpha$.

Real closed field

Not RCF by strict Solovay

Theorem 13 (Downey, Hirschfeldt, and Nies 2002)

Let α be a non-computable non-ML-random left-c.e. real. Then, there are two non-computable left-c.e. reals β and γ such that $\beta, \gamma <_S \alpha$ and $\beta + \gamma = \alpha$.

In particular, for such α , $\{\gamma \in \mathbf{WC} : \gamma <_S \alpha\}$ does not form a real closed field.

Non-random w.c. reals

Theorem 14 (Demuth 1975)

Let $\alpha, \beta \in \mathbf{LC}$. Suppose that $\alpha + \beta$ is ML-random. Then, at least one of α and β is ML-random.

Theorem 15 (Miller 2017)

The set of all non-ML-random weakly computable reals forms a real closed field.

Derivative

Theorem 16 (Barmpalias and Lewis-Pye 2017)

Fix an ML-random left-c.e. real Ω and its approximation $(\Omega_s)_s$. Let α be a weakly computable real with approximation $(\alpha_s)_s$ and let

$$\partial \alpha = \lim_{s \to \infty} \frac{\alpha - \alpha_s}{\Omega - \Omega_s}.$$

If α is ML-random, then $\partial \alpha$ exists independent from the approximation and not zero. If α is not ML-random, then $\partial \alpha = 0$.

Table of Contents

Introduction to algorithmic randomness

• Real closed field

• Strong Solovay reducibility

Definition

CA: the set of all computably approximable reals or equivalently Δ_2^0 CS(α): the set of all computable sequence of rationals converging to α

Definition 17

Let $\alpha, \beta \in \mathbf{CA}$. α is strongly Solovay reducible to β , denoted by $\alpha \ll_S \beta$, if there exist $(a_n)_n \in \mathrm{CS}(\alpha)$ and $(b_n)_n \in \mathrm{CS}(\beta)$ such that

$$\lim_{n \to \infty} \frac{|\alpha - a_n|}{|\beta - b_n| + 2^{-n}} = 0.$$

 $\alpha \ll_S \beta$ roughly means that the convergence to α is much faster than that to $\beta.$

RCF by strong Solovay

Proposition 18

 $S(\ll \Omega)$ is equal to the set of all non-ML-random weakly computable reals.

Proposition 19

 $S(\ll \beta)$ forms a real closed field for every $\beta \in \mathbf{CA}$.

Remark

- In Barmpalias and Lewis-Pye's result, the limit does not depend on approximations.
- In the definition of strong Solovay reducibility, we only require such an approximation to exist.

Solovay degree invariant

Proposition 20

Let $\alpha, \beta, \gamma \in \mathbf{CA}$.

- 1. If $\alpha \ll_S \beta$, then $\alpha \leq_S \beta$.
- 2. If $\alpha \leq_S \beta$ and $\beta \ll_S \gamma$, then $\alpha \ll_S \gamma$.
- 3. If $\alpha \ll_S \beta$ and $\beta \leq_S \gamma$, then $\alpha \ll_S \gamma$.

Thus, \ll_S is Solovay degree invariant.

Reflexivity

Proposition 21

Let $\alpha \in \mathbf{CA}$. Then, $\alpha \ll_S \alpha$ if and only if α is computable.

Characterization via derivative

Theorem 22

Let $\alpha, \beta \in CA$. Then, $\alpha \ll_S \beta$ if and only if there exist $(a_n)_n \in CS(\alpha)$, $(b_n)_n \in CS(\beta)$, and a continuous function g such that

- 1. the derivative $g'(\beta) = 0$,
- 2. $|g(b_n) a_n| \le 2^{-n}$ for all n.

We can further impose the following condition:

▶ The function g is differentiable on the real line.

Thank you for listening.

