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Abstract. We explore Solovay reducibility in the context of computably approximable reals,

extending its natural characterization for left-c.e. reals via computable Lipschitz functions.

Our paper offers two distinct characterizations: the first employs Lipschitz functions, while the

second utilizes Turing reductions with bounded use with respect to signed-digit representation.

Additionally, we examine multiple related reducibilities and establish separations among them.

These results contribute to a refined perspective of the relationship between Solovay reducibility

and computable Lipschitz functions.
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1. Introduction

1.1. Background. The theory of algorithmic randomness [4, 13] specifies what it means for a

real number to be random. The most studied concept of randomness is probably Martin-Löf

randomness, which has many good properties as a randomness notion. See [10, Section 3.10]

for a history of this topic.

The next problem is to define which of the two real numbers is more random than the

other. There are many reducibilities defined in the literature. One such reducibility is Solovay

reducibility. Informally, one real is Solovay reducible to another if one can construct a good

approximation of the former from any good approximation of the latter. Although Solovay

reducibility has many advantages, it behaves well only for left-c.e. reals.

A real is called left-c.e. if it has a computable approximation from below. The left-c.e. reals

are well-studied in the theory of algorithmic randomness, but the set of all left-c.e. reals is not

closed under even subtraction. The set of all weakly computable reals introduced in [1] is a

more natural class of reals. For example, the set of all weakly computable reals forms a real

closed field (Ng [12] and Raichev [14]).

Zheng and Rettinger [20] defined S2a-reducibility that coincides with Solovay reducibility

for left-c.e. reals and well-behaves even outside left-c.e. reals. In this paper, we refer to this

reducibility simply as Solovay reducibility.

1.2. Characterization via Lipschitz functions. Relatively recently, Kumabe, Miyabe, Mizu-

sawa, and Suzuki [8] noticed that Solovay reducibility for left-c.e. reals has a natural character-

ization via computable Lipschitz functions. An approximation of α may change significantly

only when that of β does as well. Such boundedness of the slope from above corresponds to

the Lipschitz condition.

The first question discussed in this paper is whether Solovay reducibility for computably

approximable reals is characterized by Lipschitz functions. We affirm this in Theorem 3.7.

While Solovay reducibility for left-c.e. reals is characterized by computable Lipschitz functions,

we use lower and upper semi-computable Lipschitz functions to characterize Solovay reducibility

for computably approximable reals. Roughly speaking, α is Solovay reducible to β if and only

if (β, α) is sandwiched between two such functions.

1.3. Characterization via signed-digit representation. The next question discussed in

this paper is whether the Solovay reducibility for computably approximable reals is character-

ized by bounded use.
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In computability theory, many reducibilities, such as truth-table reducibility and weak truth-

table reducibility, are defined or characterized by the bounded use principle. This raises the

question: can Solovay reducibility also be characterized in a similar manner?

One such trial would be computable Lipschitz reducibility (abbreviated by cL-reducibility),

which is defined by a Turing reduction with bounded use n+O(1). The n-th bit is computable

from (n + c)-bits of the oracle. Although cL-reducibility shares some traits with Solovay re-

ducibility, the two are not comparable [4, Theorem 9.1.6, 9.10.1].

The issue is not with reducibility but with representation. When representing a real number

using binary representation, even if the real is found to be included in a short interval with

rational endpoints, this may not determine a long initial segment of the name of the real in the

binary representation.

The same issue arises in the field of computable analysis [19], which studies the computability

of analysis. The signed-digit representation is one of the most common representations of real

numbers used in computable analysis, which best fits the paper’s purpose. While the binary

representation uses {0, 1} to represent each digit, the signed-digit representation uses {0, 1,−1}.
This allows for overlapping the set of cylinders represented by finite digits and is suitable for

defining the use of oracles.

We answer the question above. Solovay reducibility can be characterized via Turing reduc-

tions with bounded use with respect to the signed-digit representation (Theorem 4.9). Thus, if

one replaces binary representation in cL-reducibility with signed-digit representation, it char-

acterizes Solovay reducibility.

This result is pleasing to us. This characterization does not rely on approximations of reals;

hence, we offer a natural extension of Solovay reducibility for all reals. Future work will explore

its properties.

1.4. Separation. In the characterization of Solovay reducibility for computably approximable

reals by Lipschitz functions, we use lower and upper semi-computability. In the characterization

for left-c.e. reals, we used intervals whose upper endpoints are left-c.e. Are these specific notions

truly indispensable? We aim to address this query. To be more specific, will the notion change

if one substitutes computable functions for lower and upper semi-computable functions in the

characterization? Will the notion change if one requires the functions in the characterization

to be locally defined?

To tackle these questions, we present simpler variants of Solovay reducibility, specifically cL-

local reducibility and cL-open reducibility. We then separate between these variants in Theorem

5.4 and 5.5, which means that the simpler notions do not characterize Solovay reducibility.

1.5. Overview. An overview of this paper is as follows. Starting with Section 3, we delve

into characterizing Solovay reducibility for computably approximable reals, achieved through

Lipschitz functions. To give it a proof, we also provide a Cauchy-style characterization. In

Section 4, we characterize Solovay reducibility via Turing reductions with bounded use with

respect to the signed-digit representation. In Section 5, we introduce some variants of Solovay

reducibility and separate them.
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2. Preliminaries

We follow the standard notation from computability theory, computable analysis, and algo-

rithmic randomness. For details, see such as Soare [17], Brattka, Hertling, and Weihrauch [2],

and Downey and Hirschfeldt [4], respectively.

2.1. Computability of reals. A function f :⊆ 2<ω → 2<ω is a partial computable function

if it is computable by a Turing machine. A real x is computable if there exists a computable

sequence (an)n of rationals such that |an+1 − an| < 2−n for all n ∈ ω and x = limn an. A

real x is left-c.e. if there exists an increasing computable sequence (an)n of rationals such that

x = limn an. A real x is right-c.e. if −x is left-c.e. A real x is weakly computable if there

exists a computable sequence (an)n of rationals such that
∑

n |an+1−an| < ∞ and x = limn an,

or equivalently, there are two left-c.e. reals y, z such that x = y − z. A real x is computably

approximable if there exists a computable sequence (an)n of rationals such that x = limn an. The

set of all computable reals, all left-c.e. reals, all weakly computable reals, and all computable

approximable reals are denoted by EC, LC, WC, and CA, respectively. We have the following

inclusions:

EC ⊊ LC ⊊ WC ⊊ CA,

and each inclusion is proper.

An open set on R is called c.e. if it is the empty set or the union of a computable sequence

of intervals (a, b) with rational endpoints. More precisely, an open set U ⊆ R is c.e. if it is the

empty set or there exist computable sequences (an)n, (bn)n of rationals such that an < bn for all

n ∈ ω and U =
⋃

n(an, bn). The sequence ((an, bn))n of pairs is called a name of U . A function

f : R → R is lower semi-computable if f(x) can be computably approximated from below from

a Cauchy-name of x. This is equivalent to saying that {x ∈ R : f(x) > q} is a c.e. open set

uniformly in q ∈ Q, in the sense that their names are computable uniformly in q. A function

f : R → R is upper semi-computable if −f is lower semi-computable. A function f : R → R is

called computable if it is lower and upper semi-computable.

2.2. Solovay reducibility. The original definition of Solovay reducibility is defined as follows.

Let α, β be left-c.e. reals. Then α ≤S β if there are a constant q ∈ ω and a partial computable

function f : Q → Q such that if r ∈ Q and r < β, then f(r) ↓< α and α − f(r) < q(β − r)

where ↓ means “is defined” (Solovay [18]).

Let (an)n, (bn)n be computable increasing sequences of rationals converging to α, β, respec-

tively. Then, α ≤S β if and only if there are a constant q and a computable function g such

that α − ag(n) < q(β − bn) for all n (Calude, Coles, Hertling, and Khoussainov [3]). In partic-

ular, α ≤S β if and only if there are computable increasing sequences (an)n, (bn)n of rationals

converging to α, β respectively and a constant q such that α− an < q(β − bn) for all n.

Solovay completeness has a strong connection to Martin-Löf randomness (ML-randomness)

as follows. We say that a left-c.e. real β is Solovay complete for left-c.e. reals if α ≤S β for

all left-c.e. reals α. Then, Solovay [18] showed that every Solovay complete left-c.e. real is

ML-random and the Kučera-Slaman theorem [9] states that every left-c.e. ML-random real is

Solovay complete. We usually denote a left-c.e. ML-random real by Ω.
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Solovay reducibility for computable approximable reals is defined as follows.

Definition 2.1 (Zheng and Rettinger [20, Definition 3.1]). Let α, β ∈ CA. Then α ≤S β if

there are computable sequences (an)n, (bn)n of rationals converging to α, β respectively and a

constant q such that |α− an| < q(|β − bn|+ 2−n) for all n.

Rettinger and Zheng [15, Lemma 3.2] characterize it by that, for any computable sequence

(bn)n converging to β, there exist a computable sequence (an)n converging to α and q ∈ ω

satisfying the inequality above. Thus, intuitively, α ≤S β means that if one is given a good

approximation bn of β, then one can compute a good approximation an of α. The approximation

(bn)n of β may oscillate, so bn may happen to be very close to β. In such a case, the error of

an is only as small as 2−n up to a constant. Notice that (an)n, (bn)n need not to be increasing.

If α, β are left-c.e., then Definition 2.1 coincides with the original definition by Solovay (Zheng

and Rettinger [20, Theorem 3.2]). This notion offers better behavior for real numbers that are

not left-c.e.

Solovay completeness for weakly computable reals remains the same. In fact, any weakly

computable ML-random real is left-c.e. or right-c.e. (Rettinger and Zheng [15, Theorem 2.5]).

For any left-c.e. ML-random real Ω, we have

{α ∈ CA : α ≤S Ω} = WC. (1)

Furthermore, a weakly computable real is Solovay complete for weakly computable reals if

and only if it is ML-random (Rettinger and Zheng [15, Theorem 3.7, Corollary 3.8]). Indeed, a

weakly computable real is Solovay complete if and only if it is a left-c.e. or right-c.e. ML-random

real.

3. Solovay reducibility via Lipschitz functions

Solovay reducibility for left-c.e. reals has a natural characterization via Lipschitz functions.

Proposition 3.1 (Kumabe et al. [8, Theorem 4.2]). Let α and β be left-c.e. reals. Then α ≤S β

if and only if there exists a computable non-decreasing Lipschitz function f whose domain is

(−∞, β) and limx→β, x<β f(x) = α.

This section characterizes Solovay reducibility for computably approximable reals via Lips-

chitz functions.

3.1. Cauchy-style characterization of Solovay reducibility. First, we give a new Cauchy-

style characterization of Solovay reducibility for computably approximable reals. The original

definition by Zheng and Rettinger uses the difference |α − an| between the real α and its

approximation an.

For left-c.e. reals, a characterization of Solovay reducibility is known that uses the difference

an+1 − an between two approximations an and an+1 as follows: For α, β ∈ LC, α ≤S β if and

only if there are computable non-decreasing sequences (an)n and (bn)n converging to α and β,

respectively, and q ∈ ω such that

(∀n)an+1 − an < q(bn+1 − bn), (2)
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from [6]; see also [4, Lemma 9.1.7]. We give a corresponding result for computably approximable

reals by means of the difference an−ak between two approximations an and ak, which may not

be adjacent. Thus, the characterization is similar to the definition of Cauchy sequences.

Many results in this paper seem to be able to be extended to replace Solovay reducibility

with quasi-Solovay reducibility [8]. Thus, for later use, we give a proof by showing a lemma

with some generalized form.

Assumption 3.2. Assume that F : R≥0 → R≥0 is a computable function such that

(i) F (0) = 0,

(ii) F is increasing.

Note that F is continuous because F is computable.

Notation 3.3. For α ∈ CA, let CS(α) denote the set of all computable sequences of rationals

converging to α [20].

Lemma 3.4. Let α, β ∈ CA, (an)n ∈ CS(α), and (bn)n ∈ CS(β). Suppose that

(∀n)|α− an| ≤ F (|β − bn|) + 2−n, (3)

where F satisfies Assumption 3.2. From these sequences, one can construct (cn)n ∈ CS(α) and

(dn)n ∈ CS(β) such that

(∀k, n)[k < n ⇒ |cn − ck| < F (|dn − dk|) + 2−k]. (4)

Proof. We begin with construction.

Construction.

We will define (cn)n and (dn)n as computable subsequences of (an)n and (bn)n respectively.

More precisely, we construct a computable increasing function j(n) from ω to ω and define

cn = aj(n) and dn = bj(n) for all n. Let j(0) := 1, c0 := a1 and d0 := b1. Assume that we

have chosen increasing sequence j(k) for k < n and we have defined ck := aj(k) and dk := bj(k).

Further, assume that for each k < n, we have

|α− ck| < F (|β − dk|) + 2−j(k). (5)

Here, note that j(k) ≥ k+ 1 and thus 2−j(k) < 2−k. Since F is continuous, all sufficiently large

j satisfy the following:

|aj − ck| < F (|bj − dk|) + 2−k (6)

for each k < n. Hence, we can effectively find a j such that

• j simultaneously satisfy (6) for all k < n, and

• j ≥ max{j(k) : k < n}+ 1.

Let j(n) be this j and cn := aj(n) and dn := bj(n).

Since (cn)n and (dn)n are subsequences of (an)n and (bn)n respectively, we have (cn)n ∈ CS(α)

and (dn)n ∈ CS(β). Furthermore, the induction hypothesis (5) also holds. Hence, we have the

following:

(∀k < n)|cn − ck| < F (|dn − dk|) + 2−k,

for all n, which is equivalent to the desired statement. □
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Proposition 3.5. Let α, β ∈ CA. Then, the relation α ≤S β holds if and only if there exist

computable sequences (an)n and (bn)n converging to α and β respectively and q ∈ ω such that

(∀k, n ∈ ω)[k < n ⇒ |an − ak| < q · (|bn − bk|+ 2−k)] (7)

Proof. (“if” direction) Suppose that (an)n ∈ CS(α), (bn)n ∈ CS(β), and q ∈ ω satisfies (7). By

letting n → ∞, we have

(∀k)|ak − α| ≤ q · (|bk − β|+ 2−k) < (q + 1)(|bk − β|+ 2−k),

which implies α ≤S β by Definition 2.1.

(“only if” direction) Suppose that α ≤S β via (an)n, (bn)n, and q ∈ ω. By shifting (an)n, (bn)n
finitely many times if necessary, say, c times, we can assume to have

|α− an| < q(|β − bn|+ 2−n−c) < q|β − bn|+ 2−n

for all n. Now we apply Lemma 3.4 with F (x) = qx to deduce the existence of (cn)n ∈ CS(α)

and (dn)n ∈ CS(β) such that, for all k, n ∈ ω,

k < n ⇒ |cn − ck| < q|dn − dk|+ 2−k.

Hence, the triple of (cn)n, (dn)n, and q + 1 is a witness of (7). □

For left-c.e. reals α, β, the statement (2) obviously implies the corresponding stronger state-

ment: (∀k, n ∈ ω)[k < n ⇒ an − ak < q(bn − bk)].

For computably approximable reals α, β, this stronger Cauchy-style statement (7) is required

for a characterization of Solovay reducibility and the adjacent version does not imply Solovay

reducibility. The following proof is due to one of the reviewers.

A real β ∈ WC is called variation non-ML-random if there exists (bn)n ∈ CS(β) such that

the variation
∑

n |bn+1− bn| is finite and non-ML-random. Otherwise, α is called variation ML-

random ([11, Definition 3.3]). Then, there exists a real β ∈ WC such that β is not ML-random

but variation ML-random ([11, Theorem 3.5]).

Let β ∈ WC be such a real and let (bn)n ∈ CS(β) be with finite variation α ∈ WC. Then,

α is ML-random. Thus, α is not Solovay reducible to β.

Let an =
∑

k<n |bk+1 − bk|. Then, (an)n is a computable sequence of rationals converging to

α and the adjacent version of (7)

(∀n)[|an+1 − an| < q(|bn+1 − bn|+ 2−n)]

obviously holds.

3.2. Characterization via Lipschitz functions. Now, we characterize Solovay reducibility

for computably approximable reals via Lipschitz functions.

While Solovay reducibility for left-c.e. reals has a characterization via computable Lipschitz

functions in Proposition 3.1, we use upper and lower semi-computable Lipschitz functions for

a characterization of Solovay reducibility for computably approximable reals.
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Definition 3.6. A function interval is the pair of two functions f and h with f(x) ≤ h(x) for

all x ∈ R. A function interval (f, h) is semi-computable if f is lower semi-computable and h is

upper semi-computable.

Theorem 3.7. Let α, β ∈ CA. Then, α ≤S β if and only if there exist a semi-computable

function interval (f, h) such that

(i) f, h are both Lipschitz functions,

(ii) f(β) = h(β) = α.

In other words, the point (β, α) is sandwiched between f and h, and f and h converges to α

as the input variable goes to β. Since f and h are Lipschitz, both functions are continuous. If

f = h everywhere, then f and h are computable Lipschitz functions. Thus, the condition used

in the theorem above is weaker than the condition being computable Lipschitz functions.

We give a proof of this theorem by giving lemmas. The “if” direction follows from the lemma

below by letting F (x) = qx for some q ∈ ω.

Lemma 3.8. Let α, β ∈ CA. Suppose that there exists a semi-computable function interval

(f, h) such that

(i) |f(x)− α| ≤ F (|x− β|) for all x ∈ R,
(ii) limx→β h(x) = α.

where F satisfies Assumption 3.2. Then, there exist (an)n ∈ CS(α) and (bn)n ∈ CS(β) such

that

(∀n)|α− an| < F (|β − bn|) + 2−n.

Proof. Suppose such a function interval (f, h) exists. Fix (an)n ∈ CS(α) and (bn)n ∈ CS(β).

We further assume that bn ̸= β for each n.

We construct a computable increasing function p : ω → ω such that

(∀n)|α− ap(n)| < F (|β − bp(n)|) + 2−n,

which implies the desired claim. Let p(0) = 0. Assume that p(k) has been defined for each

k < n. For each n ∈ ω, we search m > p(n− 1) satisfying

(I) h(bm)− f(bm) < 2−n−1,

(II) f(bm)− 2−n−1 < am < h(bm) + 2−n−1.

Then, let p(n) be this m. Since am → α, bm → β as m → ∞, we have f(bm) → α by (i) and

by continuity of F implied by Assumption 3.2. We also have h(bm) → α by (ii). Hence, items

(I) and (II) hold for all sufficiently large m. Hence, such m is always found.

For this m = p(n), we have

f(bm)− am < 2−n−1 < 2−n. (8)

Here, we used the first inequality of item (II). Similarly, we have the following, where we use

(II) for the first inequality, and (I) for the second inequality.

am − f(bm) ≤ h(bm) + 2−n−1 − f(bm) ≤ 2−n. (9)
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Hence, the difference can be evaluated as

|α− am| ≤ |α− f(bm)|+ |f(bm)− am| ≤ F (|β − bm|) + 2−n,

where we used the triangle inequality for the first inequality and assumption (i) and the con-

ditions (8) and (9) for the second inequality. □

The “only if” direction of Theorem 3.7 follows from the lemma below.

Lemma 3.9. Let α, β ∈ CA, (an)n ∈ CS(α), (bn)n ∈ CS(β). Suppose that

(∀k, n)[k < n ⇒ |an − ak| ≤ F (|bn − bk|) + 2−k], (10)

where F satisfies Assumption 3.2. Further, assume that F is subadditive:

F (x+ y) ≤ F (x) + F (y) for all x, y ≥ 0.

Then, there exists a semi-computable function interval (f, h) such that

(i) |f(x)− f(y)| ≤ F (|x− y|) and |h(x)− h(y)| ≤ F (|x− y|) for all x, y ∈ R,
(ii) f(β) = h(β) = α.

Proof. The condition (10) is equivalent to

(∀k, n)[k < n ⇒ ak − F (|bn − bk|)− 2−k < an < ak + F (|bn − bk|) + 2−k].

Inspired from this, we define functions f and h as follows:

(a) f(x) = supn∈ω(an − F (|x− bn|)− 2−n),

(b) h(x) = infn∈ω(an + F (|x− bn|) + 2−n).

Notice that f is lower semi-computable and h is upper semi-computable.

First, we claim that (f, h) is a function interval. Suppose for a contradiction that h(x) < f(x)

for some x ∈ R. Then, there exist k, n ∈ ω such that

ak + F (|x− bk|) + 2−k < an − F (|x− bn|)− 2−n. (11)

Then, using the monotonicity and subadditivity of F , we have

F (|bn − bk|) ≤ F (|x− bn|+ |x− bk|) ≤ F (|x− bn|) + F (|x− bk|),

F (|bn − bk|) + 2−min{k,n} < F (|x− bn|) + F (|x− bk|) + 2−n + 2−k < an − ak,

which contradicts the assumption (10).

Next, we show item (ii). By definition of f , we have f(β) ≥ an − F (|β − bn|) − 2−n for all

n. By letting n → ∞, we have f(β) ≥ α because F is continuous and F (0) = 0. Similarly, we

have h(β) ≤ α. Then, by f ≤ h we have f(β) = h(β) = α.

Finally, we show the item (i). We only give a proof for f because the proof for h is analogous.

It suffices to show the following:

f(y) ≤ f(x) + F (|x− y|) for all x, y ∈ R,

which is implied by

an − F (|y − bn|)− 2−n ≤ an − F (|x− bn|)− 2−n + F (|x− y|) for all n,
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which is equivalent to

F (|x− bn|) ≤ F (|y − bn|) + F (|x− y|).
If y is between x and bn, then this is true by the subadditivity of F . If y is not between x and

bn, then at least one of |y − bn| and |x − y| is larger than or equal to |x − bn| because of the

monotonicity of F from Assumption 3.2. Thus, this holds. □

3.3. Bounded approximation. We have seen some properties of Solovay reducibility for com-

putably approximable reals via computable approximations in this section. Recall that, by

definition, every weakly computable real has a computable approximation with the bounded

sum of the differences. Here, we remark that we can enforce the condition in the propositions

we have proved in this section.

In addition to Notation 3.3, we use the following notation.

Notation 3.10. For α ∈ WC, and let CSbd(α) = {(an)n ∈ CS(α) :
∑

n |an+1 − an| < ∞},
where the superscript “bd” is for “bounded”.

First, we enforce this condition for Lemma 3.4, which will imply the other results relatively

straightforwardly.

Proposition 3.11. In Lemma 3.4, we further assume one of the following (i) or (ii);

(i) α, β ∈ WC,

(ii) β ∈ WC and F is superadditive:

F (x+ y) ≥ F (x) + F (y) for all x, y ≥ 0.

Then, we have α ∈ WC and we can enforce (cn)n ∈ CSbd(α) and (dn)n ∈ CSbd(β) in (4).

Proof. First, we assume (i). By Lemma 3.4, there are (cn)n ∈ CS(α) and (dn)n ∈ CS(β) with

the inequality (4). Since α, β ∈ WC, there are sequences (xn)n ∈ CSbd(α), (yn)n ∈ CSbd(β).

We construct a strictly increasing computable function j(n) such that

(cj(n))n ∈ CSbd(α), (dj(n))n ∈ CSbd(β) (12)

To do this, let j(0) = 1 and, for each n ≥ 1, search the index j > j(n− 1) such that

|cj − xj| < 2−n, |dj − yj| < 2−n, (13)

and let j(n) be the minimal such index. Since (cn)n and (xn)n are computable and converge to

the same real α, the inequality should hold for all sufficiently large j. The same holds for (dn)n
and (yn)n. Thus, we can always find such j(n).

Then, the inequality (4) holds for this new pair of sequences. This is because, for each

k, n ∈ ω such that k < n, we have j(k) < j(n),

|cj(n) − cj(k)| < F (|dj(n) − dj(k)|) + 2−j(k),

and j(k) > k.

We claim that (12) holds. This is because

|dj(n+1) − dj(n)| ≤ |dj(n+1) − yj(n+1)|+ |yj(n+1) − yj(n)|+ |yj(n) − dj(n)|

< |yj(n+1) − yj(n)|+ 2−n−1 + 2−n,
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by the triangle inequality and the inequality (13), whose sum over n is bounded by (yn)n ∈
CSbd(β). The fact (cj(n))n ∈ CSbd(α) can be proved similarly.

Now we assume (ii). We similarly construct the function j(n) as above, but we replace the

inequality 13 with

|dj − yj| < 2−n.

because we cannot use (xn)n. We can prove the inequality (4) and the fact (dj(n))n ∈ CSbd(β)

similarly.

To prove (cj(n))n ∈ CSbd(α), let M ∈ ω be such that∑
n

|dj(n+1) − dj(n)| < M.

Then, we have

|cj(n+1) − cj(n)| < F (|dj(n+1) − dj(n)|) + 2−j(n),

whose sum from n = 0 to N ∈ ω is

N∑
n=0

|cj(n+1) − cj(n)| <
N∑

n=0

F (|dj(n+1) − dj(n)|) +
N∑

n=0

2−j(n)

≤ F (
N∑

n=0

|dj(n+1) − dj(n)|) +
N∑

n=0

2−n−1

< F (M) + 1

by the superadditivity and the monotonicity of F . Since N is arbitrary, we have (cj(n))n ∈
CSbd(α). □

Proposition 3.11 implies the following:

Corollary 3.12. In Proposition 3.5 and Definition 2.1, if we further assume that β ∈ WC,

we can enforce (an)n ∈ CSbd(α) and (bn)n ∈ CSbd(β). In particular, for α ∈ CA, β ∈ WC

such that α ≤S β, we have α ∈ WC.

Notice that the equality (1) also implies the latter claim.

4. Solovay reducibility via signed-digit representation

In this section, we give another characterization of Solovay reducibility via Turing reduction

with bounded use with respect to signed-digit representation. The condition is similar to the

condition of cL-reducibility, except that the cL-reducibility uses the binary representation while

our characterization of Solovay reducibility uses the signed-digit representation.

4.1. Computable-Lipschitz reducibility on Cantor space. The definition of cL-reducibility

is as follows.

Definition 4.1 (Downey, Hirschfeldt, and LaForte [5]). For α, β ∈ 2ω, the real α is computably-

Lipschitz-reducible to β, denoted by α ≤2ω

cL β, if there exists a Turing functional Φ such that

α = Φ(β) and use(Φ, β, n) ≤ n+O(1) where use is the use function.
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See [4, Section 9.6] for the terminology of this notion.

The cL-reducibility is similar to Solovay reducibility in some sense. For example, both Solovay

and cL-reducibility imply K-reducibility. However, cL-reducibility and Solovay reducibility are

incomparable even for left-c.e. reals.

Theorem 4.2 ([4, Theorem 9.1.6]). There exist left-c.e. reals α ≤S β such that α ̸≤wtt β.

Note that cL-reducibility implies wtt-reducibility.

Theorem 4.3 ([4, Theorem 9.10.1]). There exist left-c.e. reals α ≤2ω

cL β such that α ̸≤S β.

Notice that cL-reducibility uses the binary expansion of the reals α, β as representation.

4.2. Signed-digit representation. Here, we review some notions from computable analysis

and introduce the signed-digit representation.

Let Σ be an alphabet. Let Σ∗ denote the set of all finite sequences of Σ and Σω the set of all

infinite sequences of Σ. A representation ρ of R is a surjective function ρ :⊆ Σω → R.
The most well-studied representation would be the Cauchy representation, which is an in-

finite sequence of rationals converging to the real fast enough. Here, we use the signed-digit

representation ρsd [19, Section 7.2]: Let Σ = {0,±1} and

ρsd : Σ
ω → [−1, 1], ρsd(X) =

∞∑
n=0

X(n)2−n−1.

One can extend this by adding integer parts so that the range is the whole real line R. However,
we use this ρsd for simplicity.

The cylinder sets induced by this representation are also defined as follows: For a finite

sequence σ ∈ Σ∗, let [σ]sd be the set of reals ρsd-represented the sequences with initial segment

σ, that is,

[σ]sd = {ρsd(X) ∈ [−1, 1] : σ ≺ X for some X ∈ Σω}.

For example, [0]sd = [−1/2, 1/2], [(−1)]sd = [−1, 0], and [10]sd = [1/4, 3/4].

We use the notation X ↾ n for X ∈ Σω and n ∈ ω to mean the initial segment of X with

length n, that is,

X ↾ n = X(0)X(1) · · ·X(n− 1).

One desirable property of the signed-digit representation is the following:

Observation 4.4. Let n ∈ ω. For any interval I ⊆ [−1, 1] with length |I| ≤ 2−n, there exists

σ ∈ Σ∗ with length |σ| = n such that

I ⊆ [σ]sd.

For any string σ ∈ Σ∗ with length |σ| = n, [σ]sd is the closed interval with length 2−n+1 whose

endpoints have the form k · 2−n for some integer k. Furthermore, two adjacent cylinder sets

made from strings of length n overlap by the length of 2−n. Thus, we can find such a string.

If the endpoints of I are rational, one can find such I effectively. Further, we can do this

uniformly in the following sense.



SOLOVAY VIA LIPSCHITZ AND SD 13

Proposition 4.5. Let (In)n be a computable sequence of intervals of rational endpoints such

that

In ⊇ In+1, |In| ≤ 2−n

for all n. Then, there exists a computable sequence X ∈ Σω such that

In ⊆ [X ↾ n]sd

for all n.

As an example, consider the case that

I1 = [1/4, 3/4], I2 = [3/8, 5/8].

By Observation 4.4, we can find a string σ1 = 1 such that I1 ⊆ [σ1]sd. Since I2 ⊆ I1 ⊆ [σ1]sd,

one can find σ2 = 10 such that σ1 ≺ σ2 and I2 ⊆ [σ2]sd.

-1 1

10 [1]

[10]1
4

3
4[11]1

2 1
Figure 1. The cylinders deduced from sd-representation

We use this fact to show that, for a given ρsd-name X1 of x ∈ R, we can construct another

ρsd-name X2 of x ∈ R such that, if another real y is close to x, then some ρsd-name of y shares

many initial segments with X2. To formalize this, we define the following notation.

For a string σ ∈ Σ∗, let a, b ∈ R be such that [σ]sd = [a, b] and

I = [a− 2−|σ|, b+ 2−|σ|] ∩ [−1, 1] (14)

Then, I is the closed interval, and the length of this interval is bounded from above as follows:

|I| ≤ (b− a) + 2−|σ|+1 = 2−|σ|+2.

By Observation 4.4, there exists τ ∈ Σ∗ with length |σ| − 2 such that

I ⊆ [τ ]sd, (15)

if |σ| ≥ 2. We call this τ a covering string of σ and denote it by σc. The covering string may

not be unique; we may impose further conditions in a proof later.

Proposition 4.6. From a ρsd-name X ∈ Σω of a real x ∈ R, one can compute another ρsd-name

X ′ ∈ Σω of the same real x ∈ R such that

[x− 2−n−3, x+ 2−n−3] ∩ [−1, 1] ⊆ [X ′ ↾ n]sd.

Furthermore, X ′ ↾ n depends only on X ↾ (n+ 3).

We call the sequence X ′ above a covering sequence of x.
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Proof. Let

In = [(X ↾ (n+ 3))c]sd.

We can make In be decreasing because so is ([X ↾ (n+ 3)]sd)n. Since |In| ≤ 2−n, by relativized

Proposition 4.5, one can compute X ′ ∈ Σω from X such that In ⊆ [X ′ ↾ n]sd for all n ∈ ω. Let

a, b ∈ R such that x ∈ [X ↾ (n+ 3)]sd = [a, b]. Then, we have

[x− 2−n−3, x+ 2−n−3] ∩ [−1, 1] ⊆ [a− 2−n−3, b+ 2−n−3] ∩ [−1, 1] ⊆ In

because of the property (14) and (15) of the covering string (X ↾ (n+ 3))c. □

4.3. Characterization via bounded use. A function g :⊆ [−1, 1] → [−1, 1] is called (ρsd, ρsd)-

computable if there exists a computable function Φ :⊆ Σω → Σω such that

ρsd(Φ(X)) = g(ρsd(X)) for all X ∈ dom(ρsd).

In this case, we also say that Φ (ρsd, ρsd)-realizes g. In other words, given any ρsd-name X of

a point x = ρsd(X) ∈ dom(g), Φ computes some ρsd-name Φ(X) of g(x).

Definition 4.7. Let H : ω → ω be a non-decreasing function. A function g :⊆ R → R is

(ρsd, ρsd)-computable with use bound H if there exists a computable function Φ :⊆ Σω → Σω

such that

(i) Φ (ρsd, ρsd)-realizes g,

(ii) use(Φ, X, n) ≤ H(n) for all X ∈ Σω and n ∈ ω such that Φ(X)(n) ↓.

With these definitions, we can characterize Solovay reducibility via Turing reductions with

bounded use with respect to the signed-digit representation. Before that, we give a total-

function version as a warm-up, which will be interesting on its own.

Theorem 4.8. Let α, β ∈ [−1, 1]. Then, there exists a total and computable Lipschitz function

g : [−1, 1] → [−1, 1] such that g(β) = α if and only if there exists a total function g : [−1, 1] →
[−1, 1] such that

(i) g(β) = α,

(ii) g is (ρsd, ρsd)-computable with use bound H(n) = n+O(1).

The proof idea is as follows. For the “if” direction, consider two close inputs x1 and x2.

Then, some names of them share many initial segments. Thus, the output should be close. For

the “only if” direction, given a total and computable Lipschitz function, we construct a Turing

reduction with bounded use. By the Lipschitz condition, the longer we fix the initial segments

of the input, the longer we can fix the initial segments of the output.

Proof. (“if” direction)

It suffices to show that g is a Lipschitz function. Let x1, x2 ∈ [−1, 1] be such that x1 ̸= x2.

Let d ∈ ω be such that

2−d < |x1 − x2| ≤ 2−d+1.

Let d′ = max{d− 1, 0}. Then, there exist X1, X2 ∈ Σω such that

ρsd(X1) = x1, ρsd(X2) = x2, and X1 ↾ d
′ = X2 ↾ d

′
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by Observation 4.4.

Take Φ :⊆ Σω → Σω that (ρsd, ρsd)-realizes g and assume that the use is bounded by H(n) =

n+ c. Then, Φ(X1) and Φ(X2) share the same initial segment of length d′ − c, which means

|g(x1)− g(x2)| ≤ 2−d′+c+1.

Hence, g is a Lipschitz function.

(“only if” direction)

Let g be a total Lipschitz computable function such that g(β) = α. Take some c ∈ ω such

that the Lipschitz constant for g is bounded by 2c.

For X ∈ Σω, we define Φ(X)(n) inductively on n ∈ ω. Let

Sn = [X ↾ (n+ c+ 2)]sd, Jn = [ inf
x∈Sn

g(x), sup
x∈Sn

g(x)].

As an induction hypothesis, we assume Φ(X)(k) is defined for each k < n. We further assume

that

Jk ⊆ [Φ(X) ↾ (k + 1)]sd

for each k < n.

Since the length of the interval Sn is 2−n−c−1 and g is Lipschitz with Lipschitz constant 2c,

the length of Jn is bounded by 2c · 2−n−c−1 = 2−n−1. By the induction hypothesis, the interval

Jn ⊆ Jn−1 is contained in [Φ(X) ↾ n]sd if n ≥ 1. Thus, we can define Φ ↾ (n+ 1) so that

Jn ⊆ [Φ(X) ↾ (n+ 1)]sd =: J ′
n.

We claim that Φ (ρsd, ρsd)-realizes g. Fix w ∈ [−1, 1] and fix W ∈ Σω such that ρsd(W ) = w.

Since w ∈ [W ↾ (n+ c+ 2)]sd, we have g(w) ∈ Jn ⊆ J ′
n. Since the length of J ′

n converges to 0,

we have ρsd(Φ(W )) = g(w).

Finally, note that the use when computing Φ(X) ↾ n is n+ c+ 1. □

Now, we give the main result of this section.

Theorem 4.9. Let α, β be computably approximable reals. Then, α ≤S β if and only if there

exists a partial function g :⊆ R → R such that

(i) g(β) = α,

(ii) g is (ρsd, ρsd)-computable with use bound H(n) = n+O(1).

The proof idea of the “if” direction is as follows. While the proof of Theorem 4.8 constructs

a computable Lipschitz function, the following proof of Theorem 4.9 constructed computable

approximations of α and β. Given some Turing functional Φ and some approximation bn of β,

we construct an approximation an of α. The function g induced by the Φ may not be defined

at other than β. Even if bn is close to β, for some name of bn as input, Φ may produce some

initial segments of a name of a real far from α. However, some names of bn share many digits

with a name of β. Thus, for such names of bn as input, Φ should produce some initial segments

of a name of β. Thus, we need to take a name of bn carefully. This problem is overcome by

taking a covering sequence.
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As an example, let β = −2−n and bm = 2−n for some large n. Consider the following two

ρsd-names of bm:

Bm = 1(−1)n−10ω,

B′
m = 0n−110ω.

Also consider the following ρsd-name of β:

B = 0n−1(−1)0ω.

Suppose that, for each ρsd-name of β, the Turing functional Φ produces some ρsd-name of α.

Then, A = Φ(B) is a ρsd-name of α. Since B and B′
m share many initial segments, Φ with input

B′
m also shares long initial segments with A. However, we have no information on Φ(Bm).

Although we do not know where β is, if we use a covering sequence of bm as input, then the

cylinders induced from the output contain all reals that are close to bm.

Assumption 4.10. Assume that H : ω → ω is an unbounded non-decreasing computable

function.

Lemma 4.11. Let α, β ∈ CA ∩ [−1, 1]. Let H : ω → ω satisfy Assumption 4.10. Let F be a

function satisfying Assumption 3.2 and

(∀x > 0)(∀d ∈ ω)
(
x ≥ 2−H(d+1)−3 ⇒ F (x) ≥ 2−d+1

)
(16)

Suppose that there is a Turing functional Φ :⊆ Σω → Σω such that

(i) for each ρsd-name B of β, the output Φ(B) is a ρsd-name of α,

(ii) use(Φ, X, n) is bounded by H(n) for all X ∈ Σω and n ∈ ω.

Then, there exist (an)n ∈ CS(α) and (bn)n ∈ CS(β) such that

(∀n)|α− an| ≤ F (|β − bn|) + 2−n+1.

Furthermore, (an)n and (bn)n do not depend on F .

Remark 4.12. If we further assume α, β ∈ WC, we can enforce (an)n ∈ CSbd and (bn)n ∈ CSbd

by Proposition 3.11.

Note that the “if” direction follows from this lemma as follows. Suppose that H(n) = n+ c.

We take F (x) = 2c+5 · x. Then this F satisfies Assumption 3.2 and:

(∀x > 0)(∀d ∈ ω)
(
x ≥ 2−(d+1+c)−3 ⇒ F (x) = 2c+5x ≥ 2−d+1

)
.

By the lemma above, we have α ≤S β.

Proof of Lemma 4.11. Let (bm)m ∈ CS(β). We also assume that 0 < |β − bm| < 2−H(0)−3 for

all m.

For each m ∈ ω, by Proposition 4.6, one can compute Bm ∈ Σω such that

ρsd(Bm) = bm, [bm − 2−n−3, bm + 2−n−3] ∩ [−1, 1] ⊆ [Bm ↾ n]sd. (17)

We define a computable sequence (an)n of Σ∗ with an increasing computable function p(n)

inductively on n as follows: Let p(0) = 0. For n ≥ 1, suppose that p(k) is defined for each
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k < n. Search m ≥ max{p(n − 1) + 1, H(n) + 3} such that Φ(Bm) produces at least n-digits.

If m is found, then let p(n) be this m and let An = Φ(Bp(n)) ↾ n and an = ρsd(An0
ω).

We claim this procedure works; we can always find such m. Suppose that n is given. Since

bn → β as n → ∞, we have |β − bm| is sufficiently small for large m. For such m, we have

β ∈ [Bm ↾ H(n)]sd. Thus, Bm and some ρsd-name of β share H(n) digits. Hence, Φ(Bm ↾ H(n))

produces at least n digits by (ii).

We claim that

(∀n)|α− an| ≤ F (|β − bp(n)|) + 2−n+1. (18)

Fix n ∈ ω. Let d ∈ ω be such that

2−H(d+1)−3 ≤ |β − bp(n)| < 2−H(d)−3. (19)

If d ≤ n, then

β ∈ [bp(n) − 2−H(d)−3, bp(n) + 2−H(d)−3] ∩ [−1, 1] ⊆ [Bp(n) ↾ H(d)]sd

by the right inequality of (19) and (17). Since the use of Φ at β is bounded by H, by means of

(i) we have

α ∈ [Φ(Bp(n)) ↾ d]sd = [An ↾ d]sd,

which implies

|α− an| ≤ 2−d+1 ≤ F (|β − bp(n)|),

where the last inequality follows from the left inequality of (19) and the assumption of F , that

is, (16). If d > n, then β ∈ [Bp(n) ↾ H(n)]sd and |α− an| ≤ 2−n+1 by replacing d above with n.

Combined with them, we have the inequality (18). □

The proof for the “only if” direction is analogous to that of Theorem 4.8.

Proof of the “only if” direction of Theorem 4.9. Suppose that α ≤S β. Then, by Theorem 3.7,

there exist a semi-computable function interval (f, h) such that f, h are both Lipschitz functions

and f(β) = h(β) = α. Take some c ∈ ω such that the Lipschitz constants for f, h are bounded

by 2c.

For X ∈ Σω, we define Φ(X) ↾ (n+ 1) inductively on n ∈ ω. Let

Sn = [X ↾ (n+ c+ 3)]sd, Jn = [min
x∈Sn

f(x),max
x∈Sn

h(x)].

Since f(x) ≤ h(x) for each x ∈ [−1, 1], the interval Jn has a positive length or is a single-

point set. Since f is continuous and Sn is a compact set, A = minx∈Sn f(x) exists. Since f

is the pointwise limit of non-decreasing sequence (fi)i of uniformly computable functions, by

Dini’s theorem, the convergence is uniform. This implies A = supi minx∈Sn fi(x). Hence, A is

left-c.e. (One can prove this by assuming only lower semi-continuity of f instead of continuity.

See Appendix for the details.) Similarly, maxx∈Sn h(x) exists and is right-c.e. Thus the length

|Jn| is a right-c.e. real.

As an induction hypothesis, we assume Φ(X) ↾ (k+1) is defined for each k < n. We further

assume that

Jk ⊆ [Φ(X) ↾ (k + 1)]sd
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is confirmed at the stage such that Φ(X)(k) is defined for each k < n. Then, we just wait for

a stage s such that |Jn[s]| ≤ 2−n−1 where Jn[s] is the approximation of Jn at stage s. By the

induction hypothesis, we have

Jn[s] ⊆ Jn−1[s] ⊆ [Φ(X) ↾ n]sd

if n ≥ 1. Thus, we can define Φ(X) ↾ (n+ 1) so that

Jn ⊆ [Φ(X) ↾ (n+ 1)]sd =: J ′
n.

Let g be a partial function such that dom(g) ∋ β and g(β) = α. We claim that Φ defined

above (ρ, ρ)-realizes g. Fix a ρsd-name B ∈ Σω of β. Since β ∈ [B ↾ (n+ c+ 3)] and the length

of this interval is 2−n−c−2, we have

inf
x∈Sn

f(x) ≥ α− 2c · 2−n−c−2 = α− 2−n−2.

Similarly supx∈Sn
h(x) ≤ α+2−n−2. Thus, |Jn| ≤ 2−n−1. Hence, ρsd(Φ(B)) is defined. Further-

more, we also have α ∈ Jn ⊆ J ′
n for all n. Hence, Φ(X) is a ρ-name of α.

Again, note that the use when computing Φ(X) ↾ n is n+ c+ 3. □

5. Some variants of Solovay reducibility

Proposition 3.1 characterizes Solovay reducibility for left-c.e. reals via computable Lipschitz

functions whose domain is an open interval. Can we extend the function to be total?

In Theorem 3.7, we characterized Solovay reducibility for computably approximable reals via

two semi-computable Lipschitz functions. Are these notions different if we require the function

to be computable instead of semi-computable?

To answer these questions, we consider some variants of Solovay reducibility and separate

the variants and Solovay reducibility.

Definition 5.1 (cL-open reducibility). We say that an open interval I = (a, b) is c.e. if a is a

right-c.e. real and b is a left-c.e. real. For α, β ∈ R, α is computably-Lipschitz-reducible to β

on a c.e. open interval, denoted by α ≤op
cL β, if there exists a Lipschitz computable function f

on a c.e. open interval I such that limx∈I→β f(x) = α.

Definition 5.2 (cL-local reducibility). For α, β ∈ R, α is computably-Lipschitz-reducible to

β locally, denoted by α ≤loc
cL β, if there exists a Lipschitz computable function f on an open

interval I such that β ∈ I and f(β) = α.

For cL-open reducibility, β may be an end-point of I, and it is possible that β ̸∈ I. For

cL-local reducibility, β should be contained in the domain of f .

Notice that we used a total Lipschitz function in Theorem 4.8. Since the function in the

definition of cL-local reducibility can be extended to be a total Lipschitz function, the condition

used in Theorem 4.8 is equivalent to cL-local reducibility.

Observation 5.3. For computably approximable reals α, β, we have

α ≤loc
cL β ⇒ α ≤op

cL β ⇒ α ≤S β.

For left-c.e. reals α, β, α ≤op
cL β if and only if α ≤S β.
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Proof. The first implication follows from the definition.

For the second implication, let f and I be a witness of α ≤op
cL β. Let (bn)n be a computable

sequence of rationals converging to β. Since β is an accumulation point of I, we can further

assume that bn ∈ I for all n ∈ ω. Since f is computable, there exists a computable sequence

(an)n of rationals such that

|f(bn)− an| < 2−n

for all n. Then,

|α− an| ≤ | lim
n

f(bn)− f(bn)|+ |f(bn)− an| < L|β − bn|+ 2−n,

where L is a Lipschitz constant of f . Hence, we have α ≤S β.

For left-c.e. reals, the “if” direction follows from Proposition 3.1. □

We will prove that these implications are strict below.

5.1. Separation between cL-loc and cL-open reducibilities. We prove that cL-loc and

cL-open reducibilities differ even for left-c.e. reals.

Theorem 5.4. There exist left-c.e. reals α, β such that α ≤op
cL β but α ̸≤loc

cL β.

The idea of the proof is as follows. We will construct such α, β ∈ LC in stages.

We use the priority argument with finite injuries. Each requirement Ri states that if the

i-th partial computable function fi is a Lipschitz function with a given Lipschitz constant,

fi(β) ̸= α. These requirements assure α ̸≤loc
cL β.

The strategy for Ri to be satisfied is as follows. If some initial segments of α and β are fixed,

then (β, α) is in the larger box [x0, x1]× [y0, y1] in Figure 2. Initially, (β, α) is in A in Figure 2.

If fi is total, then fi(x) produces approximations within arbitrary precision. When the com-

putation fi(x1) produces an approximation within high precision, the requirement Ri requires

attention.

The action for Ri to be met is as follows. Let f = fi. If (x1, f(x1)) is closer to C than to B,

then we redefine the initial segments of α and β so that (β, α) is in B in Figure 2. If (x1, f(x1))

is closer to B than to C, then we set (β, α) is in C in Figure 2.

If f is total, (x1, f(x1)) is closer to C, and f(β) = α, then f should have a steep slope, which

contradicts that f is a Lipschitz function with a given Lipschitz constant. For the case that

(x1, f(x1)) is closer to B, we can argue similarly.

At each stage, if some requirements require attention, pick the one with the highest priority

among those and act for the requirement. The action injures all requirements with lower

priority. If Ri is injured, then set (β, α) to be in A, the initial state.

Proof. We will construct the left-c.e. reals α, β ∈ [0, 1] in stages. The s-th approximations are

denoted by infinite binary sequences αs, βs ∈ 2ω such that αs(n) = βs(n) = 0 for all n ≥ d(s+1)

where d is defined later. In particular, αs and βs only have finite information.

We set each requirement Ri as follows. Fix a computable enumeration (fi)i of all partial

computable functions from [0, 1] to [0, 1]. As usual, we assume that every function is enumerated

infinitely often. Then, set

Ri : fi is defined on [0, 1] and fi is 2
i-Lipschitz ⇒ fi(β) ̸= α.



SOLOVAY VIA LIPSCHITZ AND SD 20

x1x0
y0

y1

A

B
C (x1, f(x1))

(β, α)
steep slope

1
4 (y0 + 3y1)
1
2 (y0 + y1)

Figure 2. possible positions of (β, α)

If α ≤loc
cL β and α, β ∈ [0, 1], then there exists a locally Lipschitz computable function f such

that f(β) = α. Then, there exists an index i such that fi = f in a neighborhood of β. Hence,

meeting all requirements implies α ̸≤loc
cL β. The construction enforces α ≤S β. Since both α

and β are left-c.e., this is equivalent to α ≤op
cL β.

Each requirement Ri manages a predetermined part of αs and βs as follows. Let d : ω → ω

be a computable function that diverges fast enough with d(0) = 0, say, d(i) = 4i2. Let Ti be the

finite sequence of consecutive natural numbers from d(i) to d(i+ 1)− 1. We use the following

notation: For X ∈ 2ω,

X ↾ n = X(0)X(1) · · ·X(n− 1),

X ↾ Ti = X(d(i))X(d(i) + 1) · · ·X(d(i+ 1)− 1).

We refer to X ↾ Ti as Ti-interval of X. The requirement Ri may change Ti-intervals of αs and

βs. The specific value of d will be used in the calculation of equation (28). The rate at which

d increases corresponds to a steep slope.

Note that there is a partial computable function from (i, d, q) ∈ ω × ω × (Q ∩ [0, 1]) to a

rational approximation (fi ↾ d)(q) of fi(q) within 2−d if defined. Even if fi(q) is not defined,

then (fi ↾ d)(q) may be defined for some d and may not be defined for other d. Also note that

the relation “(fi ↾ d)(q) is defined within s steps” is decidable.

Construction.

Fix some i ∈ ω. The strategy for the single requirement Ri to be satisfied is as follows. The

requirement Ri only cares about αs ↾ Ti and βs ↾ Ti.

At the initial stage s = 0, define

αs ↾ Ti = βs ↾ Ti = 0|Ti| (20)

where |Ti| = d(i+ 1)− d(i). Hence, α0 = β0 = 0ω.
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At stage s ≥ 1, we define x0, x1, y0, y1 by

x0 = (βs−1 ↾ d(i))0
ω,

x1 = (βs−1 ↾ d(i)))1
ω,

y0 = (αs−1 ↾ d(i))0
ω,

y1 = (αs−1 ↾ d(i))1
ω

as in Figure 2. Notice that the possible initial position of (β, α) in Figure 2 is in A.

The action for Ri to be met is as follows. Define βs, αs as follows:

αs ↾ Ti = 1z|Ti|−1, βs ↾ Ti = 1|Ti|, (21)

where

z =

0 if (fi ↾ d(i+ 1))(x1) ≥ (y0 + 3y1)/4,

1 if (fi ↾ d(i+ 1))(x1) < (y0 + 3y1)/4.

Notice that the possible range of the point (β, α) in Figure 2 moves from region A to region B

when z = 0 or to region C when z = 1.

Note that the side length of the larger square is 2−d(i) because we fix the first d(i) bits of αs

and βs. Similarly, the side length of the smaller square is 2−d(i+1).

The priority order is Ri > Ri+1 for all i ∈ ω. If some action for a requirement with higher

priority than Ri is taken at stage s, then we say that Ri is injured at stage s and define

Ti-interval as in (20), that is, it goes back to the initial state.

We say that a requirement Ri is met at stage s if an action for Ri is taken at or before stage

s and Ri is not injured after the action stage until the end of stage s. Notice that each Ri is

initially not met.

We say that Ri requires attention at stage s if both of the following two conditions hold:

(a) Ri is not met at stage s− 1,

(b) (fi ↾ d(i+ 1))(x1) is defined within s steps.

Also note that the conditions (a) and (b) are decidable, respectively. The condition (b) means

that fi(x) is already defined precisely enough to meet Ri by changing Ti-intervals of αs, βs.

Now, we define the strategies for all Ri simultaneously. At stage s = 0, all Ti-intervals of

αs, βs have the initial state, say, (20). At stage s ≥ 1, we denote j = j(s) as the smallest

natural number i ≤ s such that Ri requires attention. If no Ri requires attention, then j(s) is

not defined and each Ti-intervals is restrained by

αs ↾ Ti = αs−1 ↾ Ti, βs ↾ Ti = βs−1 ↾ Ti. (22)

If j(s) is defined, then we act for Rj at this stage s. Thus, the Tj-interval is defined by (21).

Each requirement Ri for i > j is injured and initialized by (20). Each requirement Ri for i < j

restrains the interval by (22).

Verification.

Claim: For each i ∈ ω, the actions for Ri are taken at most finitely many times.
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We can prove this by induction on i. Once the action for Ri is taken, Ri continues to be met

until a requirement with higher priority injures Ri. Since the actions for requirements with

higher priority are taken at most finitely many times by the induction hypothesis, so are those

for Ri.

Claim: The requirement Ri is not met at stage s if and only if αs ↾ Ti, βs ↾ Ti have the initial

state (20).

Fix i ∈ ω. We prove this by induction on s. At stage s = 0, Ri is not met, and the claim

follows from the definition (20). Let s ≥ 1 be the stage. If no action is taken at stage s, then

Ti-interval is restrained by (22), and the claim follows from the induction hypothesis. Suppose

that the action for Rj is taken at stage s. If i < j, then again, Ti-interval is restrained, and

the claim follows from the induction hypothesis. If i = j, then Ri is met at stage s, and

αs ↾ Ti, βs ↾ Ti do not have the initial state by (21). If i > j, then Ri is injured and Ri is not

met at this stage s, and αs ↾ Ti, βs ↾ Ti are initialized by (20), thus the claim follows.

Initial state Met

Action for

Injured

αs ↾ Ti, βs ↾ Ti

Ri Ri

Ri

Figure 3. possible states of αs ↾ Ti, βs ↾ Ti

Claim: α, β ∈ LC.

When the action for Rj is taken, αs ↾ Ti and βs ↾ Ti for all i < j are restrained and αs ↾ Tj

and βs ↾ Tj are changed from 0|Tj |. This means that αs and βs are non-decreasing.

Claim: α ≤S β.

We evaluate the differences α− αs and β − βs.

For each s, let k(s) = min{j(t) : t > s}. This k(s) is the least index of the requirements

for actions after stage s. Since Rk(s) is not injured after stage s, there is the unique t > s such

that j(t) = k(s).

Since any action for Ri where i < k(s) is not taken, the initial d(k(s)) bits of approximations

of α do not change after stage s. Thus, we have

α− αs ≤ 2−d(k(s)). (23)

Similarly, the first d(k(s)) bits of βs do not change after stage s. Since the action for Rk(s) is

taken at stage t, Rk(s) is not met at stage t− 1. If Rk(s) is met at stage s, then Rk(s) continues

to be met at t − 1 because Rk(s) is not injured after stage s, which is a contradiction. Thus,

Rk(s) is not met at stage s and βs ↾ Tk(s) has the initial state at stage s, that is,

βs ↾ Tk(s) = 0|Tk(s)|.
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Since the action for Rk(s) is taken at stage t, and Rk(s) is not injured after stage t, Rk(s) continues

to be met after t, that is,

βu ↾ Tk(s) = 1|Tk(s)|.

for all u ≥ t by (21) and (22). Thus, we have

β − βs ≥
d(k(s)+1)−1∑
n=d(k(s))

2−n−1 − 2−d(k(s)+1) (24)

Since d(i+ 1)− d(i) ≥ 4 for all i ∈ ω, we have

β − βs ≥ 2−d(k(s))−1 ≥ 2−1(α− αs)

by (23) and (24). Hence, the claim follows.

Claim: For each i, the requirement Ri is satisfied.

Fix i such that fi is defined on [0, 1] and fi(β) = α. The goal is to show that fi has a steep

slope.

Let s ∈ ω be the last stage such that the actions for requirements with higher priority than

Ri are taken. If such a stage does not exist, let s = 0. Then, Ri is not met at stage s. Notice

that Ri continues to be non-met after stage s until the action for Ri is taken. Since fi is defined

on [0, 1] as we assumed so above, both conditions (a) and (b) hold eventually. Hence, there is

the unique stage t > s such that the action for Ri is taken at stage t.

We claim that the hypothesis fi(β) = α implies that the slope of fi should be large. Let

x0, x1, y0, y1 be the reals at the stage t. Then, we have

x1 − β ≤ 2−d(i+1) (25)

because they share the same initial segment length d(i+ 1).

Let z ∈ {0, 1} be the one defined at stage t. Suppose that z = 0. By (21), the point (β, α)

stays in B and

α ≤ y0 + y1
2

+ 2−d(i+1).

Since (fi ↾ d(i+ 1))(x1) ≥ (y0 + 3y1)/4, we have

fi(x1)− fi(β) ≥ (fi ↾ d(i+ 1))(x1)− 2−d(i+1) − α (26)

≥ y0 + 3y1
4

− 2−d(i+1) − y0 + y1
2

− 2−d(i+1)

= 2−d(i)−2 − 2 · 2−d(i+1). (27)

By (25) and (27), the slope should be larger than or equal to

2−d(i)−2 − 2× 2−d(i+1)

2−d(i+1)
= 2d(i+1)−d(i)−2 − 2 = 28i+2 − 2 > 2i, (28)

which contradicts the assumption of Ri. The other case of z = 1 is similar.

The final claim above implies α ̸≤loc
cL β. This completes the proof. □
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5.2. Separation between cL-open and Solovay reducibilities. We have seen that cL-

open and Solovay reducibilities are equivalent for left-c.e. reals (Observation 5.3), but they are

different for weakly computable reals in general as follows.

Theorem 5.5. There exist α, β ∈ WC such that α ≤S β but α ̸≤op
cL β.

The proof is similar to that of Theorem 5.4. We focus on the differences and refer to the

above for the same argument.

We will construct such α, β ∈ WC in stages. This time, the approximation can not be

monotone, and we use the signed-digit representation ρsd in the following proof. At each stage

s, we define αs, βs ∈ Σω. For each n ∈ ω, αs(n), βs(n) stabilizes as s goes infinity. The induced

infinite sequences of Σ are ρsd-names of α, β.

We again use the priority argument with finite injuries. Each requirement Ri states that if

fi is defined at all reals less than β or at all reals larger than β, and fi is a Lipschitz function

with a given constant, then α ≤op
cL β via fi does not hold.

The strategy for Ri to be satisfied is as follows. If αs ↾ d(i) and βs ↾ d(i) are fixed, then the

point (β, α) is in the larger square in Figure 4. Initially, (β, α) is in E in Figure 4.

We pick rationals x−1 and x1. If the computation fi(x−1) or fi(x1) produces an approximation

within high precision, then the requirement Ri requires attention.

The action for Ri to be met is as follows. Let f = fi. If the requirement Ri requires attention,

we know an approximation with high precision at least one of f(x−1) or f(x1). According to

whether the approximation is ≥ y0 or < y0, we redefine the initial segments of αs and βs so

that so that (β, α) is in a smaller square in Figure 4. For example, if the approximation of

f(x1) is larger than y0, we set (β, α) as the lower right square. If f(β) = α, then β and x1 are

close while α and f(x1) are not close, which implies that f should have a steep slope.

E

x−1 x1

(x1, f(x1))
y0

Figure 4. possible positions of (β, α)

Proof. We will construct the weakly computable reals α, β ∈ [−1, 1] in stages. The s-th ap-

proximations of them are denoted by αs, βs ∈ Σω where Σ = {0,±1}.
We set each requirement Ri as follows. Fix a computable enumeration (fi)i∈ω of all partial

computable functions from [−1, 1] to [−1, 1]. As usual, we assume that every function is
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enumerated infinitely often. Then, set

Ri : fi is defined and 2i-Lipschitz on [−1, β) or (β, 1] ⇒ fi(β) ̸= α.

Then, meeting all requirements implies α ̸≤op
cL β.

Let d(i) and Ti be the same as in the proof of Theorem 5.4. For X ∈ Σω, let

X ↾ n = X(0)X(1) · · ·X(n− 1), (29)

X ↾ Ti = X(d(i))X(d(i) + 1) · · ·X(d(i+ 1)− 1). (30)

Construction.

Fix i. At the initial stage s = 0, define

αs ↾ Ti = βs ↾ Ti = 0|Ti|. (31)

At stage s ≥ 1, we define

x−1 = ρsd((βs−1 ↾ d(i))(−1)0ω),

x1 = ρsd((βs−1 ↾ d(i))10
ω),

y0 = ρsd((αs−1 ↾ d(i))0
ω),

as in Figure 4.

The action for Ri to be met is as follows. Define

αs ↾ Ti = z0|Ti|−1, βs ↾ Ti = w0|Ti|−1, (32)

where z, w are defined below, respectively:

z w

(c) (fi ↾ d(i+ 1))(x−1) is defined and ≥ y0 -1 -1

(d) (fi ↾ d(i+ 1))(x−1) is defined and < y0 1 -1

(e) (fi ↾ d(i+ 1))(x1) is defined and ≥ y0 -1 1

(f) (fi ↾ d(i+ 1))(x1) is defined and < y0 1 1

If both (fi ↾ d(i+ 1))(x−1) and (fi ↾ d(i+ 1))(x−1) are defined, take (e) or (f).

Note that the length of the side of the larger square is 2−d(i)+1, and the one of the smaller

square is 2−d(i+1)+1.

We say that Ri requires attention at stage s if both of the following two conditions hold:

(a) Ri is not met at stage s− 1,

(b) (fi ↾ d(i+ 1))(x−1) or (fi ↾ d(i+ 1))(x1) is defined within s steps.

The priority order is Ri > Ri+1 for all i ∈ ω. We use the terminology injured, met, and the

initial state similarly in the proof of Theorem 5.4. We also use the same simultaneous strategies

for all Ri.

Verification.

Claim: For each i, the actions for Ri are taken at most 2i many times.
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The action for R0 is taken at most once because it has the highest priority and is not injured.

For i ≥ 1, the number of the actions for Ri is bounded by one plus the number of injuries by

requirements with higher priority, which is

1 +
i−1∑
n=0

2n = 2i.

Claim: If Ri is not met at stage s, then αs ↾ Ti and βs ↾ Ti have the initial state (31).

The proof of this part is the same as that in Theorem 5.4.

Claim: α, β ∈ WC.

For each i, we have j(s) = i for at most 2i many s. For each such s, the difference is bounded

by as follows:

|ρsd(αs)− ρsd(αs−1)| ≤ |ρsd(αs−1 ↾ d(i))z0
ω)− ρsd(αs−1 ↾ d(i))0

ω)|

+ |ρsd(αs−1 ↾ d(i))0
ω)− ρsd(αs−1)|

≤ 2−d(i)+1 + 2−d(i+1)+1.

Recall that if two ρsd-names share n digits, then the difference is bounded by 2−n+1. Since the

action for Ri is taken at stage s, Ri is not met at stage s − 1 and αs−1 ↾ Ti have the initial

state, which implies the last inequality above. Similarly, we have

|ρsd(βs)− ρsd(βs−1)| ≤ 2−d(i)+1 + 2−d(i+1)+1.

Thus, the total sums of the differences are bounded by∑
s

|ρsd(βs)− ρsd(βs−1)| ≤
∑
i

2i · (2−d(i)+1 + 2−d(i+1)+1) < ∞.

Claim: α ≤S β.

We evaluate the differences |α− ρsd(αs)| and |β − ρsd(βs)|.
For each s, let k(s) = min{j(t) : t ≥ s} and let t be the unique one such that j(t) = k(s).

As in the previous proof, we have

αs ↾ d(k(s)) = αu ↾ d(k(s)),

βs ↾ d(k(s)) = βu ↾ d(k(s)),

for all u ≥ s. Thus, we have

|α− ρsd(αs)| ≤ 2−d(k(s))+1. (33)

We also have

βs ↾ Tk(s) = 0|Tk(s)|,

βu ↾ Tk(s) = w0|Tk(s)|−1,

for some w ∈ {±1} for all u ≥ t.
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2−d(k(s))+1

2−d(k(s)+1)+1

E

x−1 x1(x−1 + x1)/2

ββs

Length

Length

Figure 5. possible positions of βs, β

If w = 1, then

|ρsd(βs)−
x−1 + x1

2
| ≤ 2−d(k(s)+1),

|β − x1| ≤ 2−d(k(s)+1),

|x1 −
x−1 + x1

2
| = 2−d(k(s))−1.

Thus, we have

|β − ρsd(βs)| ≥ 2−d(k(s))−1 − 2−d(k(s)+1)+1. (34)

Since d(i+ 1)− d(i) ≥ 4 for all i ∈ ω, we have

|β − ρsd(βs)| ≥ 2−d(k(s))−2 ≥ 2−3|α− ρsd(αs)|

by (33) and (34). The case w = −1 is proved similarly. Hence, the claim follows.

Claim: For each i, the requirement Ri is satisfied.

Fix i such that fi is defined on [−1, β) or (β, 1] and fi(β) = α. The goal is to show that fi
has a steep slope.

Let s be the last stage such that the action for a requirement with higher priority than Ri is

taken. Let t > s be the unique stage such that the action for Ri is taken.

We claim that if fi(β) = α, then some slope of fi should be large. Let x−1, x1, y0 be the reals

at stage t. Suppose that z = −1 and w = 1. We have

|β − x1| ≤ 2−d(i+1)+1. (35)

We also have

α ≤ y0 − 2−d(i)−1 + 2−d(i+1).

By fi(β) = α, we have

fi(x1)− fi(β) ≥ y0 − 2−d(i+1) − y0 + 2−d(i)−1 − 2−d(i+1) (36)

= 2−d(i)−1 − 2−d(i+1)+1. (37)
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2−d(i)+12−d(i+1)+1 y0
LengthLengthE

α

Figure 6. possible positions of βs, β

By (35) and (37), the slope should be larger than

2−d(i)−1 − 2−d(i+1)+1

2−d(i+1)+1
= 2d(i)−d(i−1)−2 − 1 > 2i,

which contradicts the assumption of Ri.

The other cases can be proved similarly.

The final claim above implies α ̸≤op
cL β. This completes the proof. □
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Appendix A. Lower semi-computability

The goal of this section is to show the following.

Theorem A.1. Let f : [0, 1] → R ∪ {∞} be a lower semi-computable function. Then,

A = min
x∈[0,1]

f(x)

exists and is a left-c.e. real. Here, the value A is possibly infinity.

A.1. Definition and properties. Intuitively, a function f : R → R ∪ {∞} is lower semi-

computable if f(x) is computably approximable from below from a suitable name of x. This

can be formalized in terms of computable analysis.

A simple formal definition is as follows.

Definition A.2. A function f : R → R ∪ {∞} is lower semi-computable if the sets {x ∈ R :

f(x) > q ∈ Q} are c.e. open uniformly in q ∈ Q.

Another characterization is as follows. A basic open set on R is an interval with rational

endpoints. A rational step function is a function s : R → R such that

s(x) =
n∑

i=1

ai1Bi
,

where ai ∈ Q, ai is strictly increasing (a1 < a2 < · · · < an), and
⋃n

i=k Bi is a finite union of

basic open sets for each k ∈ ω with 1 ≤ k ≤ n. For example, the following function is a rational
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step function: n = 2, a1 = 1, B1 = (0, 1] ∪ [2, 3), a2 = 3, B2 = (1, 2), which means

s(x) = 2 · 1(0,1]∪[2,3) + 3 · 1(1,2) =


3 for 1 < x < 2

2 for 0 < x ≤ 1 or 2 ≤ x < 3

0 otherwise.

Notice that B1 is not an open set but B1 ∪B2 and B2 are finite unions of basic open sets.

Proposition A.3. A function f : R → R≥0 ∪ {∞} is lower semi-computable if and only if

there exists a computable sequence (sm)m of rational step functions such that

f(x) = sup
m

sm(x)

for every x ∈ R.

Notice that a rational step function is a lower semi-computable function. Also, note that

every lower semi-computable function is lower semi-continuous.

A.2. Minimality. The extreme value theorem for lower semi-continuous functions states as

follows. We use this theorem to establish the existence part of Theorem A.1.

Theorem A.4. Let a, b ∈ R such that a < b and f : [a, b] → R ∪ {∞} be a lower semi-

continuous function. Then, f is bounded below and attains its infimum.

Since every lower semi-computable function is lower semi-continuous, the existence of the

minimum in Theorem A.1 follows.

A.3. Uniform convergence. A classical Dini’s theorem states that, if a monotone sequence

of continuous functions converges pointwise on a compact set and if the limit function is also

continuous, then the convergence is uniform.

The following theorem is Dini’s monotone convergence theorem for semi-continuous functions

[16, 17.7.j]. This is sometimes called the Dini-Cartan lemma [7, Lemma 2.2.9].

Theorem A.5. Let (fn)n be a sequence of upper semi-continuous functions from a compact set

X ⊆ R to R ∪ {∞}. If (fn)n is decreasing and limn fn(x) = 0 pointwise, then the convergence

is uniform.

Corollary A.6. Let (fn)n be a point-wise increasing sequence of lower semi-continuous func-

tions from a compact set X ⊆ R to R ∪ {∞}. Then,

inf
x∈X

sup
n

fn(x) = sup
n

inf
x∈X

fn(x).

Proof. For the inequality ≥, fix x ∈ X. Then, infy∈X fn(y) ≤ fn(x). Hence, supn infy∈X fn(y) ≤
supn fn(x). Since x is arbitrary, we have supn infy∈X fn(y) ≤ infx∈X supm fn(x).

For the converse, let A = infx∈X supn fn(x) and gn(x) = A −min{A, fn(x)}. Then, (gn)n is

a sequence of upper semi-continuous functions, decreasing, and limn gn(x) = 0 pointwise. By

Dini’s theorem for semi-continuous functions, the convergence is uniform.

Let ϵ > 0. Then, there exists n ∈ ω such that gn(x) < ϵ, which implies A− ϵ < fn(x) for all

x ∈ X. Thus, A− ϵ ≤ infx∈X fn(x). Hence, A ≤ supn infx∈X fn(x). □
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A.4. Proof.

Proof of Theorem A.1. Since A = minx∈[0,1] f(x) exists by Theorem A.4, it suffices to show that

A = infx∈[0,1] f(x) is left-c.e.

Let (sm)m be an increasing computable sequence of rational step functions such that f(x) =

supm sm(x). Since every rational step function is lower semi-continuous, by Corollary A.6, we

have A = infx∈[0,1] supm sm(x) = supm infx∈[0,1] sm(x).

Let g(m) = infx∈[0,1] sm(x). Since sm is a rational step function, g(m) exists for each m, and

g is computable. Since (sm)m is increasing, so is g. Thus, A = supm g(m) is left-c.e. □
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