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Abstract. In computability theory, we naturally encounter some countable real closed fields.
Notably, the set of all computable reals forms a real closed field. The main goal of this paper
is to explore more deeply the relationship between nonrandomness and real closed fields, by
providing various classes of nonrandom reals that form real closed fields via Solovay reducibility.

Solovay reducibility is a popular tool for studying the complexity of certain real numbers
in algorithmic randomness theory. In our earlier studies, we explored the relationship between
Solovay reducibility and Lipschitz functions, providing an analytical expression and facilitating
connections with other concepts in analysis.

We present the hierarchy of Solovay reducibility variants that correspond to different levels
of smoothness in real functions such as differentiable functions, Lipschitz functions, and Hölder
continuous functions. Using this type of reducibility, we successfully construct numerous count-
able real closed fields, thus establishing a significant connection between Solovay reducibility
and classical algebraic structures.

We also investigate the Solovay reducibility of computably approximable reals without re-
mainder terms.
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1. Introduction

1.1. Real closed field in computability theory. Some real numbers have a succinct repre-
sentation, while others do not. Typically, real numbers with a succinct representation maintain
their succinctness under basic mathematical operations. To illustrate, rational numbers remain
rational when operated upon using quadratic functions with rational coefficients. Algebraic real
numbers are the real solutions to algebraic equations with rational coefficients. Real solutions
to equations with algebraic real numbers as coefficients are again algebraic real numbers. This
property is often expressed by saying that the set of algebraic real numbers forms a real closed
field.

In computability theory, we naturally encounter some countable real closed fields. Notably,
the set of all computable reals, which is recognized as a fundamental concept in computability
theory, forms a real closed field (Rice [19] and Grzegorczyk [7]). The set of all weakly computable
reals, which represents a broader class of real numbers than that of computable reals and is also
known as d.c.e. reals, forms a real closed field, too (Ng [15] and Raichev [17]). Using the limit
lemma, we obtain a further example of a real closed field, which is the set of all computably
approximable reals: These reals are also known as limit computable reals or ∆0

2, and the set
of these reals forms an even wider class of reals. The set of K-trivial reals is an interesting
subclass of weakly computable reals, which forms a real closed field; see [16, Corollary 5.5.15]
and a comment below it. Recent studies have shown that both primitive recursive reals [20]
and nearly computable reals [8] form real closed fields.

1.2. Solovay reducibility and variants. The algorithmic randomness theory provides pre-
cise definitions of random reals, which are the opposite of real numbers with a scccinct repre-
sentation. In fact, non-ML-random weakly computable reals form a real closed field, as shown
by Miller [13]. In other words, taking real solutions of algebraic equations with non-ML-random
weakly computable reals only produces non-ML-random weakly computable reals.

The main goal of this paper is to explore more deeply the relationship between non-randomness
and real closed fields, by providing further classes of non-ML-random reals that form real closed
fields via Solovay reducibility.

Solovay reducibility is a tool for comparing two real numbers regarding their approximability
or randomness. By fixing a particular real number, we demonstrate that the set of real numbers
below it in terms of Solovay degrees forms a real closed field (Theorem 3.1). This indicates that
Solovay reducibility exhibits desirable properties. As we will see in Subsection 3.2 if we change
“below” to “strictly below,” the set ceases to be a real closed field.
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In our previous study, we examined the relationship between Solovay reducibility and Lips-
chitz functions. What happens to the corresponding reduction when we vary the smoothness of
a function? Recall that if a real function on a closed interval is C1, it is Lipschitz continuous,
which implies Hölder continuity. We try to provide a framework within which strong Solovay
reducibility (see below), Solovay reducibility, and quasi-Solovay reducibility (see below) can be
understood in a unified style.

We define strong Solovay reducibility in Definition 3.8, a novel concept introduced in this pa-
per. We see its basic properties in Subsection 3.3, and we show that strong Solovay reducibility
produces real closed fields in Theorem 3.13.

While quasi Solovay reducibility had been defined for left-c.e. reals in our previous work
[10, 9], in Section 4, we extend its definition to computably approximable reals in Definition
4.6. We characterize it via Hölder continuous functions in Proposition 4.8. We show that quasi
Solovay reducibility produces real closed fields in Proposition 4.10.

In Section 5, we investigate Solovay reducibility of computably approximable reals in a form
without remainder terms. We characterize strong Solovay reducibility via derivative in Theorem
5.2.

In Section 6, we investigate the relation between (strong) Solovay reducibility and (strong)
K reducibility.

2. Preliminaries

We follow the standard notation from computability theory, computable analysis, and algo-
rithmic randomness. For details, see such at Soare [21], Brattka, Hertling, and Weihrauch [3],
and Downey and Hirschfeldt [5], respectively.

2.1. Computability of reals. A real x is computable if there exists a computable sequence
(an)n of rationals such that |an+1−an| < 2−n for all n ∈ ω and x = limn an. A real x is left-c.e.
if there exists an increasing computable sequence (an)n of rationals such that x = limn an. A
real x is right-c.e. if −x is left-c.e. A real x is weakly computable if there exists a computable
sequence (an)n of rationals such that

∑
n |an − an−1| < ∞ and x = limn an. A real is weakly

computable if and only if it is the difference between two left-c.e. reals, thus it is also called a
d.c.e. real. A real x is computably approximable if there exists a computable sequence (an)n of
rationals such that x = limn an. The set of all computable reals, all weakly computable reals,
and all computably approximable reals are denoted by EC, WC, and CA, respectively. We
have the following inclusions:

EC ( WC ( CA,

and each inclusion is proper.

2.2. Solovay reducibility. For a brief history of Solovay reducibility for computable approx-
imable reals, see our previous paper [11, Section 2].

The following definition is due to [24, Definition 3.1].



RCF VIA STRONG SOLOVAY REDUCIBILITY 4

Definition 2.1. Let α, β be computably approximable reals. Then α ≤S β if there are com-
putable sequences (an)n, (bn)n of rationals converging to α, β respectively and a constant c ∈ ω

such that |α− an| < c(|β − bn|+ 2−n) for all n.

The characterization of Solovay completeness for weakly computable reals via Martin-Löf
randomness (ML-randomness) was developed in stages. Solovay [22] showed that each Solovay
complete left-c.e. real is ML-random. Kučera and Slaman [12] showed that each left-c.e. ML-
random real is Solovay complete. Rettinger and Zheng [18, Corollary 3.8] extended the previous
results to weakly computable reals as follows.

Proposition 2.2. A weakly computable real is Solovay complete for weakly computable reals if
and only if it is a left-c.e. or right-c.e. ML-random real.

This theorem shows that, for weakly computable reals, Solovay reducibility captures both
the degree of randomness and the degree of approximability.

3. Real closed fields of computably approximable reals

An ordered field F is called real closed if
(i) any non-negative element x ≥ 0 in F has a square root in F , and
(ii) any odd-degree polynomial with coefficients in F has a root in F .

In this section, we show that some classes of reals form real closed fields.

3.1. Solovay belowness. For each β ∈ CA, let S(≤ β) be the set of all computably approx-
imable reals Solovay reducible to β, that is,

S(≤ β) = {α ∈ CA : α ≤S β}.

If α ∈ CA, β ∈ WC, and α ≤S β, then α ∈ WC (see [11, Corollary 3.12]). Hence, if β ∈ WC,
then S(≤ β) ⊆ WC and

S(≤ β) = {α ∈ WC : α ≤S β}.

If β is a computble real, then S(≤ β) = EC. Since any ML-random left-c.e. real Ω is Solovay
complete for weakly computable reals (Proposition 2.2), we have S(≤ Ω) = WC. Recall that
EC and WC form real closed fields, respectively, as stated in Section 1. We will show that
this is true for any β ∈ CA.

Theorem 3.1. Let β be a computably approximable real. Then, S(≤ β) forms a real closed
field.

Rettinger and Zheng [18, Corollary 3.6] have already shown that S(≤ β) is a field for any
β ∈ CA. Thus, this is a slight extension of their result.

The key notion for the proof is local Lipschitz continuity. A function f :⊆ Rn → R is
called locally Lipschitz if, for any x ∈ dom(f), there is a neighborhood U of x and a Lipschitz
constant L > 0 such that (∀u,v ∈ U)[|f(u)− f(v)| ≤ L · ||u− v||] where u = (u1, u2, . . . , un),
v = (v1, v2, . . . , vn), and || · || is a norm on Rn. Since all norms on Rn are equivalent, one can
use any norm, say, ||u− v|| =

∑n
i=1 |ui − vi|.
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Lemma 3.2 (Hertling and Janicki [8] following Raichev [17]). If a subset K ⊆ R contains a
number x0 6= 0 and is closed under Lipschitz continuous computable functions f :⊆ Rk → R
with open domain dom(f) ⊆ Rk, k arbitrary, then K is a real closed subfield of R.

The set S(≤ β) satisfies the condition.

Lemma 3.3 (Rettinger and Zheng [18, Theorem 3.5]). For a computably approximable real β,
the set S(≤ β) is closed under each locally Lipschitz computable function.

Since every Lipschitz continuous function with open domain is locally Lipschitz continuous,
we have shown Theorem 3.1.

3.2. Strict Solovay belowness. Recall the following result stated in Section 1.

Theorem 3.4 (Miller [13]). The set of all non-ML-random weakly computable reals forms a
real closed field.

Let Ω be a left-c.e. ML-random real. By Proposition 2.2, the set S(< Ω) = {α ∈ WC :

α <S Ω} is the set of all non-ML-random weakly computable reals. Hence, Miller’s result can
be rephrased as that S(< Ω) forms a real closed field.

The first question here is whether we can replace this Ω by any computably approximable
real as we did in Theorem 3.1. The answer is negative, which follows from the following results.
See also Downey and Hirschfeldt [5, Theorem 9.5.9, Theorem 9.5.3].

Theorem 3.5 (Demuth [4]). If α and β are two left-c.e. reals such that α+ β is ML-random,
then at least one of α and β is ML-random.

Theorem 3.6 (Downey, Hirschfeldt, and Nies [6]). If α is a non-computable non-ML-random
left-c.e. real, then there are two non-computable left-c.e. reals β and γ such that β, γ <S α and
β + γ = α.

Thus, for any non-computable non-ML-random left-c.e. real β, the set S(< β) = {α ∈ WC :

α <S β} does not form a field, nor let alone form a real closed field. We do not know a condition
that S(< β) forms a real closed field for other reals β.

3.3. Strong Solovay belowness. The key fact in the proof of Theorem 3.4 is the following.

Theorem 3.7 (Barmpalias and Lewis-Pye [2]; see Miller [13]). Fix a left-c.e. ML-random real
Ω and its approximation (Ωs)s. Let α be a weakly computable real with approximation (αs)s
and let

∂α = lim
s→∞

α− αs

Ω− Ωs

.

If α is ML-random, then ∂α exists independent from the approximation and not zero. If α is
not ML-random, then ∂α = 0.

Inspired by this result, we introduce strong Solovay reducibility �S and show that the set
S(� β) (defined below) forms a real closed field for any computably approximable real β.
The terminology of strong Solovay reducibility comes from strong K-reducibility �K . We will
discuss the relationship between them later.
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Definition 3.8. Let α, β ∈ CA. The real α is strongly Solovay reducible to β, denoted by
α �S β, if there exist computable sequences (an)n and (bn)n of rationals converging to α and
β respectively such that

lim
n→∞

|α− an|
|β − bn|+ 2−n

= 0.

This condition comes from Definition 2.1 and Theorem 3.7.

Remark 3.9. In [9], we introduced a similar but different notion and used the same terminol-
ogy. In defining strong Solovay reducibility, several variations can be considered. For instance,
in the aforementioned definition, we can consider versions where the existential quantifiers for
sequences (an)n and (bn)n are replaced either by universal quantifiers for both or for one of
them. If only one is changed, the order can also be chosen. In this paper, we adopted the
definition that allows for the subsequent characterization, but we have not extensively explored
other possible variations.

We begin with basic observations.

Proposition 3.10. Let α, β, and γ be computably approximable reals.
(i) If α �S β, then α ≤S β.
(ii) If α ≤S β, β �S γ then α �S γ.
(iii) If α �S β and β ≤S γ, then α �S γ.

In particular, if α ≡S β and β �S γ, then α �S γ. If α �S β and β ≡S γ, then α �S γ.
Thus, the relation �S is Solovay degree invariant.

Proof. Straightforward. �

Proposition 3.11. Let α be a computably approximable real. Then, α �S α if and only if α
is computable.

The proof idea is as follows. Suppose that α �S α via (an)n and (bn)n. If a good approxima-
tion bn is given, then an for the same index n is a better approximation. By searching n′ such
that an and bn′ are close, we will get a better approximation bn′ . We can repeat this process
and get a better approximation of α as close as one wants.

Proof. The “if” direction is obvious.
For the “only if” direction, suppose that α �S α for a real α ∈ CA. Then, there are

computable sequences (an)n and (bn)n of rationals both converging to α such that

|α− an| < c(|α− bn|+ 2−n), where c =
1

4
. (1)

From these sequences, we construct a computable increasing sequence (n(k))k such that |α −
bn(k)| < 2−k for all k, which implies that α is computable.

Construction.
Let n(0) be such that n(0) > 2 and |α− bn(0)| < 1.
Given n(k − 1), let n(k) be the smallest n such that

n > n(k − 1), |bn − an(k−1)| < 2−k−1. (2)
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Verification.
We show that

(i) one can compute n(k) from n(k − 1) if k ≥ 1,
(ii) n(k) > k + 2,
(iii) |α− bn(k)| < 2−k,

by induction on k.
The claim for k = 0 is true because bn → α as n → ∞.
Suppose that n(k − 1) is given and n(k − 1) > k + 1 and |α− bn(k−1)| < 2−k−1 by induction

hypothesis. By inequality (1), we have

|α− an(k−1)| < c(2−k−1 + 2−n(k−1)) < c2−k = 2−k−2.

Thus, for any sufficiently large n, we have

|bn − an(k−1)| ≤ |bn − α|+ |α− an(k−1)| < 2−k−1.

Hence, we can find n satisfying (2) computably, which ensures condition (i) and (ii). Further-
more, we have

|α− bn(k)| ≤ |α− an(k−1)|+ |an(k−1) − bn(k)| < 2−k−2 + 2−k−1 < 2−k,

which ensures condition (iii). �

For β ∈ CA, let
S(� β) = {α ∈ CA : α �S β}.

Proposition 3.12. The set S(� Ω) is equal to the set of all non-ML-random weakly computable
reals.

Proof. Suppose that α ∈ S(� Ω). Then, α �S Ω by definition. Since �S implies ≤S by
Proposition 3.10, we have α ≤S Ω. Since Ω ∈ WC, we have α ∈ WC.

If α is ML-random, we have α 6�S α by Proposition 3.11. Since �S is Solovay degree
invariant, we have α 6�S Ω, which is a contradiction. Hence, α is not ML-random.

Suppose that α is a weakly computable real that is not ML-random. Let (an)n be a com-
putable sequence of rationals converging to α such that

∑
n |an+1 − an| < ∞. Let (Ωn)n be a

computable increasing sequence of rationals converging to Ω. Then, by Theorem 3.7, we have

lim
n

α− an
Ω− Ωn

= 0.

Thus,

0 ≤ |α− an|
|Ω− Ωn|+ 2−n

≤
∣∣∣∣ α− an
Ω− Ωn

∣∣∣∣ → 0

as n → ∞. �

Now Theorem 3.4 can be rephrased by that S(� Ω) forms a real closed field. We show that
this is true for any β ∈ CA.

Theorem 3.13. The set S(� β) forms a real closed field for each computably approximable
real β.
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Proof. The proof follows a similar approach to that used in Theorem 3.1. It suffices to show
that S(� β) is closed under each locally Lipschitz computable function. We only show this for
two-variable functions because the generalization is straightforward.

Let f : R2 → R be a locally Lipschitz computable function and x, y �S β. The goal is
to show f(x, y) �S β. Take computable sequences (xn)n, (yn)n, (an)n, and (bn)n of rationals
converging to x, y, β, β respectively such that

lim
n

|x− xn|
|β − an|+ 2−n

= 0, lim
n

|y − yn|
|β − bn|+ 2−n

= 0. (3)

For each k ∈ ω, pick up n = n(k) > k such that

|an − bn| < 2−k−1, (4)

which should exist because an, bn → β. Then,

|β − an(k)|+ 2−k ≥ |β − an(k)|+ 2−n(k)

and

|β − an(k)|+ 2−k ≥ |β − bn(k)| − |an(k) − bn(k)|+ 2−k

> |β − bn(k)| − 2−k−1 + 2−k

≥ |β − bn(k)|+ 2−n(k), (5)

which implies
|f(x, y)− f(xn(k), yn(k))|

|β − an(k)|+ 2−k
≤ L

|x− xn(k)|
|β − an(k)|+ 2−n(k)

+ L
|y − yn(k)|

|β − bn(k)|+ 2−n(k)
→ 0,

where L is a Lipschitz constant on a neighborhood of (x, y). Then, (f(xn(k), yn(k)))k and (an(k))k
are the desired sequences. Hence, we have f(x, y) �S β. �

4. Quasi Solovay reducibility

In our earlier research [10, 9], we proposed the concept of quasi-Solovay reducibility specif-
ically concerning left-c.e. reals. Here, we aim to expand this concept to computably approx-
imable reals.

4.1. Definition and coincidence.

Notation 4.1. For α ∈ CA, let CS(α) denote the set of all computable sequences of rationals
converging to α. For α ∈ LC, let ICS(α) denote the set of all increasing computable sequences
of rationals converging to α. Let EC>0 be the set of positive computable reals.

We use the following characterization of quasi Solovay reducibility for left-c.e. reals [10,
Lemma 3.1(4)] where we use EC>0 rather than positive integers.

Definition 4.2. Let α, β ∈ LC. We say that α is quasi Solovay reducible to β, denoted by
α ≤qS β, if there are (an)n ∈ ICS(α), (bn)n ∈ ICS(β), and s, q ∈ EC>0 such that

α− an ≤ q(β − bn)
s

for all n ∈ ω.
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We extend this notion to computably approximable reals.

Definition 4.3. Let α, β ∈ CA. Let s, q ∈ EC>0. We say that (α, β) satisfies (s, q)-Solovay
relation via (an)n ∈ CS(α) and (bn)n ∈ CS(β) if

|α− an| ≤ q(|β − bn|s + 2−n) (6)

for all n ∈ ω.

Observation 4.4. Let α, β ∈ CA. Then, α ≤S β if and only if (α, β) satisfies (1, q)-Solovay
relation via some sequences for some q ∈ ω.

Proposition 4.5. Let α, β ∈ LC. Then, α ≤qS β if and only if (α, β) satisfies (s, q)-Solovay
relation via some (an)n ∈ CS(α) and (bn)n ∈ CS(β) for some s, q ∈ EC>0.

Proof. The “only if” direction is immediate.
We give a proof of the “if” direction by modifying a proof of a similar result in Zheng and

Rettinger [24, Theorem 5]. Suppose that (α, β) satisfies (s, q)-Solovay relation via (an)n ∈
CS(α) and (bn)n ∈ CS(β) for some s, q ∈ EC>0. We can assume 0 < s ≤ 1.

Claim: We can further assume that (an)n ∈ ICS(α).
If an < α at most finitely many n, then α is right-c.e., which implies that α is computable

and the claim is obvious.
If an < α for infinitely many n, then fix (cn)n ∈ ICS(α) by α ∈ LC. We take a sub-sequence

(ani
)i ∈ ICS(α) as follows. Let n0 be such that an0 < α. For a defined ani

< α by induction
hypothesis, we can computably find n > ni and m such that

ani
< an < cm,

and let ni+1 be this n. Note that (α, β) satisfies (s, q)-Solovay relation via (ani
)i ∈ ICS(α) and

(bni
)i ∈ CS(β). This is the end of the proof of the claim.

The same argument applies to (bn)n and we also assume that (bn)n is increasing.
Now, we use the power mean inequality:(

xs + ys

2

)1/s

≤ x+ y

2
for any x, y ≥ 0, and 0 < s ≤ 1. (7)

When we substitute β − bn and 2−n/s for x and y, we obtain

α− an ≤ q((β − bn)
s + 2−n) ≤ 21−sq(β − bn + 2−n/s)s.

Here, (bn)n and (−2−n/s)n are increasing and the sequence (bn − 2−n/s)n of the sums is an
increasing computable sequence of rationals converging to β. Hence, α ≤qS β. �

Now, we call this notion quasi Solovay reducibility for computably approximable reals.

Definition 4.6. Let α, β ∈ CA. Then, α is quasi Solovay reducible to β, denoted by α ≤qS β,
if (α, β) satisfies (s, q)-Solovay relation for some s, q ∈ EC>0.
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4.2. Some characterizations. As done for Solovay reducibility in the previous paper [11], we
give a Cauchy-style characterization and a characterization via Hölder continuous functions for
quasi-Solovay reducibility. Most key observations have already been done in the previous work.

Proposition 4.7 (See [11, Proposition 3.5]). Let α, β ∈ CA. Then, α ≤qS β if and only if
there are (an)n ∈ CS(α), (bn)n ∈ CS(β), and s, q ∈ EC>0 such that

(∀k, n ∈ ω)[k < n ⇒ |an − ak| < q(|bn − bk|s + 2−k).

Sketch of a proof: The case when q = 1 is shown by applying [11, Lemma 3.4] with F (x) = xs.
The general case reduces to the above case by considering α/q instead of α.

Proposition 4.8 (See [11, Theorem 3.7]). Let α, β ∈ CA. Then, α ≤qS β if and only if there
are semi-comptable function interval (f, h) such that

(i) f, h are both s-Hölder continuous functions for some 0 < s ≤ 1,
(ii) f(β) = h(β) = α.

Remark 4.9. For a proof, apply [11, Lemma 3.8, 3.9] with F (x) = xs for x ≥ 0. Notice that
F (x) is subadditive for 0 < s ≤ 1, that is,

(x+ y)s ≤ xs + ys for x, y ≥ 0 and 0 < s ≤ 1. (8)

This is because

1 =
x

x+ y
+

y

x+ y
≤

(
x

x+ y

)s

+

(
y

x+ y

)s

unless x = y = 0.

4.3. Real closed field. We showed that S(≤ β) forms a real closed field in Theorem 3.1. We
give a version of quasi Solovay reducibility.

Proposition 4.10. Let β be a computably approximable real. Then, the set of reals that are
quasi-Solovay reducible to β forms a real closed field.

Proof. The proof is by straightforward modification of that of Theorem 3.13. We replace the
equation (3) with the inequalities

|x− xn|
|β − an|s + 2−n

≤ q,
|y − yn|

|β − bn|s + 2−n
≤ q,

for some q ∈ ω. We also replace the inequality (4) with

|an − bn| < 2−(k+1)/s.

Then, instead of the inequality (5), we can deduce

|β − an(k)|s + 2−k ≥ |β − bn(k)|s − |an(k) − bn(k)|s + 2−k

≥ |β − bn(k)|s − 2−k−1 + 2−k

≥ |β − bn(k)|s + 2−n(k),
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where we use that the function x 7→ xs is subadditive for 0 < s ≤ 1 (8) for the first inequality.
This implies that

|f(x, y)− f(xn(k), yn(k))|
|β − an(k)|s + 2−k

≤ L
|x− xn(k)|

|β − an(k)|s + 2−n(k)
+ L

|y − yn(k)|
|β − bn(k)|s + 2−n(k)

≤ 2qL.

�

5. Solovay and strong Solovay reducibility

In our previous work [11, Theorem 3.7], we characterized Solovay reducibility via Lipschitz
continuous functions. In Proposition 4.8 we characterized quasi Solovay reducibility via Hölder
continuous functions. The goal of this section is to characterize strong Solovay reducibility
using derivatives.

5.1. Eliminating the remainder term. First, recall the definition of Solovay reducibility
from Definition 2.1: For α, β ∈ CA, α ≤S β if there are (an)n ∈ CS(α), (bn)n ∈ CS(β), and a
positive integer q ∈ ω such that

|α− an| < q(|β − bn|+ 2−n)

for all n ∈ ω. Rettinger and Zheng [24, Section 2] observed that the relation without the
remainder term 2−n is a different notion and does not behave well. However, we can characterize
Solovay reducibility without the remainder term by considering limits as follows.

Theorem 5.1. Let α, β ∈ CA. Then, α ≤S β if and only if there exist sequences (an)n ∈ CS(α),
(bn)n ∈ CS(β), a continuous function f : R → R, and a constant q ∈ ω such that

(i) the slope f(x)−f(β)
x−β

for x 6= β is bounded by q, and
(ii) |f(bn)− an| ≤ 2−n for all n ∈ ω.

Furthermore, we can also impose that f is lower semicomputable and Lipschitz continuous with
Lipschitz constant q.

Proof. (“if” direction) By item (ii), we have f(β) = α. For each n such that bn 6= β, we have

|α− an| ≤ |f(β)− f(bn)|+ |f(bn)− an| ≤ q|β − bn|+ 2−n

by item (i) and item (ii). These inequalities are also true for each n such that bn = β.

(“only if” direction) Suppose that α ≤S β. By the Cauchy-style characterization [11, Propo-
sition 3.5] for Solovay reducibility, there exist (an)n ∈ CS(α), (bn)n ∈ CS(β), and q ∈ ω such
that

(∀k, n)[k < n ⇒ |ak − an| ≤ q|bk − bn|+ 2−k]. (9)

In the proof of a result in [11, Lemma 3.9], we showed that the function

f(x) = sup
n∈ω

(an − q|x− bn| − 2−n) (10)

has the following properties:
(a) f is lower semicomputable.
(b) f is Lipschitz continuous with Lipschitz constant q.
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The item (b) implies item (i) and that f is continuous.
Now, it suffices to show item (ii). Fix n. By the definition of f (10), we have

f(bn) = sup
k∈ω

(ak − q|bn − bk| − 2−k) ≥ an − 2−n

where we let k = n for the last inequality. By assumption (9), we have

k < n ⇒ak − q|bk − bn| − 2−k ≤ an,

n ≤ k ⇒ak − q|bn − bk| − 2−k ≤ an + 2−n − 2−k.

These facts imply f(bn) ≤ an + 2−n. Hence, item (ii) is proved. �

5.2. Characterization using derivatives. We provide a characterization for strong Solovay
reducibility using derivatives.

Recall from Definition 3.8 that, for α, β ∈ CA, α �S β if there are (an)n ∈ CS(α) and

(bn)n ∈ CS(β) such that limn→∞
|α− an|

|β − bn|+ 2−n
= 0.

Theorem 5.2. Let α, β ∈ CA. Then, α �S β if and only if there exist (an)n ∈ CS(α),
(bn)n ∈ CS(β), and a continuous function g such that

(i) the derivative g′(β) = 0,
(ii) |g(bn)− an| ≤ 2−n for all n.

We can further impose that g is differentiable on the real line.

Notice that the condition is stronger than that in Theorem 5.1.

Remark 5.3. The function g need not be computable, but g(bn) should be close to an because
of the condition (ii) and the sequences (an)n and (bn)n should be computable.

Remark 5.4. We can not impose the following condition: For every L > 0, g is an L-Lipschitz
function. This would imply that g is a constant function, which is possible only when α is
computable.

We do not know whether we can impose that g ∈ C1.

Proof. (“if” direction)
Let p(n) = n2 for n ∈ ω. Let k, n ∈ ω be such that p(n) ≤ k. By the triangle inequality, we

have
|ak − ap(n)| ≤ |ak − g(bk)|+ |g(bk)− g(bp(n))|+ |g(bp(n))− ap(n)|.

By letting k → ∞, we have

|α− ap(n)| ≤ |g(β)− g(bp(n))|+ 2−p(n) (11)

for all n ∈ ω.
Fix ε > 0. Since g′(β) = 0, there exists δ > 0 such that

0 < |x− β| < δ ⇒
∣∣∣∣g(x)− g(β)

x− β

∣∣∣∣ < ε.

By bn → β, there exists N ∈ ω such that

|bp(n) − β| < δ
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for all n ≥ N . Then, for such n ≥ N , we have

|g(bp(n))− g(β)| < ε|bp(n) − β|. (12)

By the inequalities (11) and (12), we have

|α− ap(n)|
|β − bp(n)|+ 2−n

≤
ε|β − bp(n)|+ 2−p(n)

|β − bp(n)|+ 2−n
≤ ε+ 2−p(n)+n.

This implies α �S β.

(“only if” direction)
Suppose that α �S β via (an)n ∈ CS(α) and (bn)n ∈ CS(β). We also assume that

|α− an|
|β − bn|+ 2−n

≤ 1

2
. (13)

We can assume β is not a rational and bn 6= bk for each distinct n, k ∈ ω by making minor
adjustments as required. We construct a continuous function g such that the conditions (i) and
(ii) hold.

We only construct a continuous function g(x) for x ≥ β. The construction of g(x) for x ≤ β

is similar. We use the following sets of indices of (an)n and (bn)n:

A = {n ∈ ω : β < bn, |β − bn| ≤ 2−n},

B = {n ∈ ω : β < bn, |β − bn| > 2−n}.

Then, connect the following points with a poly-line:

P = {(bn, α) : n ∈ A} ∪ {(bn, an) : n ∈ B}.

If A ∪ B is the empty set, then the following g satisfies the desired property: g(x) = α for all
x ≥ β. If A ∪ B is a non-empty finite set, then connect (β, α) and the left-most point of P so
that the derivative at β is 0. Such a poly-line is well-defined since we have assumed bn 6= bk for
each distinct n, k ∈ ω. Clearly, g is continuous.

Hereafter, we assume that A∪B is an infinite set. We claim that the right derivative of g at
β is 0. Fix ε > 0. Then, there exists N ∈ ω such that, for all n ≥ N , we have

|α− an| ≤ ε(|β − bn|+ 2−n).

If n ∈ A, we have |α− g(bn)| = 0 ≤ 2ε|β − bn|. If n ∈ B and n ≥ N , then we have

|α− g(bn)| = |α− an| ≤ 2ε|β − bn|.

Thus, all points (x, y) = (bn, g(bn)) for n ≥ N of the poly-line satisfies

|α− y| ≤ 2ε|β − x|,

which is equivalent to
α− 2ε(x− β) ≤ y ≤ α + 2ε(x− β),

and so does every point (x, g(x)) because the region represented by this inequality is convex.
Let

δ = min{|β − bn| : n < N} > 0.
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x = β

y = α
ε2−n

ε2−n

slope ε

slope −ε

slope 2ε

slope−2ε

n ∈ A n ∈ B

Figure 1. possible positions of (x, g(x))

Then, for each x such that β < x < β + δ, we have∣∣∣∣g(x)− g(β)

x− β

∣∣∣∣ ≤ 2ε,

which implies that the right derivative of g at β is 0.
We show that |g(bn)− an| ≤ 2−n for all n. For each n ∈ B, this is true because g(bn) = an.

For each n ∈ A, we have

|g(bn)− an| = |α− an| ≤
1

2
(|β − bn|+ 2−n) ≤ 2−n.

(differentiability)
Next, we modify g to create a differentiable function ĝ. Focus on a line segment of g con-

necting (x0, y0) and (x1, y1).
We use the function

f(x) =

exp(−1/x) if x > 0,

0 if x ≤ 0,

which is non-negative and infinitely differentiable. This fact is particularly well-known in the
field of analysis and can be verified through simple calculations.

The function f is used to construct a smooth transition function:

h0(x) =
f(x)

f(x) + f(1− x)
,

which is infinitely differentiable, h0(x) = 0 for x ≤ 0 and h0(x) = 1 for x ≥ 1. Thus, h0 is that
smoothly transitions from the constant function x 7→ 0 to the constant function x 7→ 1 over
the interval [0, 1].

Here, we construct a function that smoothly transitions from a constant function to a line
with a possibly non-zero slope. Let y = ax+ b be the equation of the line passing through two
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points (x0, y0) and (x1, y1). Let δ > 0 be a sufficiently small rational. We consider the functions

h1(x) =
(ax+ b)f(x− x0) + y0f(x0 + δ − x)

f(x− x0) + f(x0 + δ − x)
for x ∈ R,

and
h2(x) =

y1f(x− (x1 − δ)) + (ax+ b)f(x1 − x)

f(x− (x1 − δ)) + f(x1 − x)
for x ∈ R.

Both functions are infinitely differentiable. Furthermore, h1(x) = y0 for x ≤ x0, h1(x) = ax+ b

for x ≥ x0 + δ, and h1(x) is strictly increasing for x0 ≤ x ≤ x0 + δ. The function h2 has similar
properties.

(x0, y0)

(x1, y1)

(β, α)

εslope

2εslope

modified

x = x0 + δ

Figure 2. modification of g

Then, we define ĝ(x) for x0 ≤ x ≤ x1 as follows:

ĝ(x) =


h1(x) (x0 ≤ x ≤ x0 + δ)

ax+ b (x0 + δ ≤ x ≤ x1 − δ)

h2(x) (x1 − δ ≤ x ≤ x1).

We are going to show ĝ(x) is infinitely differentiable on this interval. Since h1(x) is infinitely
differentiable and h1(x) is a constant function for x ≤ x0, the n-th derivative of h1 at x0 is 0

for every n ≥ 1. Hence, the right n-th derivative of ĝ(x) at x0 is 0. Similarly, the left n-th
derivative at x1 is 0 for every n ≥ 1.

We do this modification for each line segment of g. Then, g is infinitely differentiable for all
x 6= β.

To claim that ĝ is differentiable, it suffices to show that the first derivative of ĝ at x = β is
0. Consider the absolute values of the slope of the line segment connecting (β, α) and (x, ĝ(x))

and those connecting (β, α) and (x, g(x)). Define

m̂ = max{
∣∣∣∣ ĝ(x)− α

x− β

∣∣∣∣ : x0 ≤ x ≤ x1}, m = max{
∣∣∣∣g(x)− α

x− β

∣∣∣∣ : x0 ≤ x ≤ x1}.
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Then, m̂ goes to m if the value δ in the definition ĝ goes to 0. Thus, we can take the value δ

sufficiently small so that
m̂ ≤ 2m.

Notice that δ depends on the line segment. Since the right-hand side goes to 0 as x → β, so
does the left-hand side. �

6. Strong Solovay and strong K-reducibility

This section investigates the relationship between two Solovay reducibilities and two K-
reducibilities. Here, we identify a real in [0, 1] and its infinite binary expansion. For two reals
α, β ∈ [0, 1], α is K-reducible to β, denoted by α ≤K β, if K(α � n) ≤ K(β � n) + O(1). The
real α is strongly K-reducible to β, denoted by α �K β, if limn→∞(K(β � n)−K(α � n)) = ∞.

The goal of this section is to show the strict implication

�K⇒�S⇒≤S⇒≤K

for left-c.e. reals, and that this does not hold for weakly computable reals. One can see that
the two Solovay reducibilities are sandwiched between the two K-reducibilities.

6.1. The case for left-c.e. reals. First, we will see that strong Solovay reducibility is sand-
wiched between strong K-reducibility and Solovay reducibility.

Proposition 6.1. Let α and β be left-c.e. reals in [0, 1]. If α �K β, then α �S β.

The proof is based on [14, Proposition 2.3].

Proof. Let (as)s ∈ ICS(α) and (bs)s ∈ ICS(β). Given n ∈ ω, let sn be the first stage s such that

as � n = α � n.

Then, there exists a constant c1 ∈ ω such that, for each n ∈ ω,

K(bsn � n) ≤ K(asn � n) + c1 = K(α � n) + c1. (14)

This is because, given asn � n, one can compute the stage sn from the approximation (as)s,
which also computes bsn � n.

For a string σ of length n, its lexicographic rank, denoted r(σ), is its position when all n-bit
strings are sorted lexicographically. This rank is a natural number between 1 and 2n. For
instance, r(0n) = 1 and r(1n) = 2n. Let

dn = r(β � n)− r(bsn � n).

Then, β � n can be computed from bsn � n and dn. Thus, there exists a constant c2 ∈ ω such
that, for each n ∈ ω,

K(β � n) ≤ K(bsn � n) +K(dn) + c2. (15)
By inequalities (14) and (15) with the assumption α �K β, we have dn → ∞ as n → ∞. If

n is sufficiently large and sn ≤ s ≤ sn+1, then

α− as ≤ α− asn ≤ 2−n,

β − bs ≥ β − bsn+1 ≥ (dn+1 − 1)2−n−1.
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Thus,
α− as
β − bs

≤ 2

dn+1 − 1
→ 0

as s → ∞. Hence, α �S β. �

The implication in Proposition 6.1 does not reverse. This is because there exists a non-ML-
random left-c.e. real α such that α 6�K Ω, which will be shown in Proposition 6.2 below. Since
α �S Ω, this pair is a counterexample.

Proposition 6.2. There exists a left-c.e. real α such that α is not ML-random and α 6�K Ω.

Proof. Barmpalias, Downey, and Greenberg [1] showed that the following are equivalent for a
c.e. degree d.

(i) There is a left-c.e. real α ≤T d not cl-reducible to any ML-random left-c.e. real.
(ii) d is array noncomputable.

Notice that such a degree exists. Let α be such a real. Then, α is not ML-random.
Let Ω be a left-c.e. ML-random real. Since α is left-c.e., we have α ≤S Ω and K(α � n) ≤

K(Ω � n) + O(1). If β �K γ for left-c.e. reals β, γ, then β <cl γ [5, Theorem 9.12.1]. Thus, if
α �K Ω, then α ≤cl Ω, which is a contradiction. �

For left-c.e. reals α, β, if α �S β, then α ≤S β by definition. This implication does not
reverse by Proposition 3.11.

6.2. The case for weakly computable reals. The implications we have shown above for
left-c.e. reals does not hold for weakly computable reals.

Proposition 6.3. There exist α, β ∈ WC such that α �K β and α 6≤S β.

Proof. Consider Tadaki’s Omega Ωd =
∑

σ∈dom(U) 2
− |σ|

d for a computable real d ∈ (0, 1). Then,
we have

dn−O(1) < K(Ωd � n) < dn+ o(n)

(see [23, Theorem 3.2]). We set β = Ω1/2. Then, β is a left-c.e. real such that 1
3
n < K(β � n) <

2
3
n for sufficiently large n, say, for all n ≥ N . Fix an increasing computable sequence (βs)s of

rationals converging to β. For each n ≥ N , we have

K(βs � n) <
2

3
n

for all sufficiently large s. By taking a sub-sequence, we can assume that (βs)s satisfies this
inequality for all n such that N ≤ n ≤ s. Then, the number of candidates βs � n is at most
22n/3.

We construct a real α ∈ WC such that α �K β and α 6≤S β. At stage s, we will define a
finite string σs = σ = σ(1)σ(2) · · ·σ(|σ|) corresponding the real

∑
σ(k)=1,1≤k≤|σ| 2

−k, and define
α = limn σn. We put the same number in each of the consecutive four digits, that is,

σ(4m+ 1) = σ(4m+ 2) = σ(4m+ 3) = σ(4m+ 4) for each m ∈ ω. (16)

This implies K(α � n) < n
4
+K(n) +O(1), which ensures α �K β.
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To ensure α 6≤S β, we use the following characterization of Solovay reducibility [24, Definition
3, Theorem 6]. For x, y ∈ WC, x ≤S y if and only if for any computable sequence (xs)s and
(ys)s of rationals converging to x, y respectively, there are an increasing computable functions f
and a constant c such that (∀s)(|x−xf(s)| ≤ c(|y−yf(s)|+2−s)). Thus, if x ∈ WC, y ∈ LC, (ys)s
is a computable increasing sequence converging to y, and x ≤S y, then there exist a computable
function g : ω → Q2, a computable increasing function f : ω → ω, and a constant c such that
(∀s)(|x− g(s)| ≤ 2c(y − yf(s) + 2−s)), where Q2 is the set of all dyadic rationals.

We have already fixed the sequence (βs)s converging to β. Fix a computable enumeration of
all triples (gk, fk, ck)k satisfying the following properties (i)-(iv).

(i) gk : ω → Q2 is a partial computable function,
(ii) fk : ω → ω is a partial computable function,
(iii) if fk(s) ↓, then fk(s− 1) ↓ and fk(s− 1) < fk(s) for all k and s,
(iv) ck ∈ ω.

Here, we may assume that each triple satisfying (i)-(iv) appears infinitely many times in the
enumeration.

We try to ensure that (gk, fk, ck) is not a witness of Solovay reducibility. We use a computable
increasing function h : ω → ω specified later. Let

v(k, s) = min{t ≤ s : βt � h(k) = βs � h(k)}.

For each k, v(k, s) is increasing in s and convergent. Let v(k) = lims v(k, s). If v(k) < h(k)

for infinitely many k, then we can compute β � h(k) = βh(k) � h(k) from k and K(β � h(k)) <

K(k) + O(1), which contradicts K(β � n) > 1
3
n for sufficiently large n (provided that h grows

fast enough). Hence, we can assume that

v(k) ≥ h(k) for all k ≥ N. (17)

We use the following requirement:

Rk :(∃t ≥ v(k))[gk(t) ↑ ∨fk(t) ↑ ∨|α− gk(t)| > 2−h(k)+ck+1].

Since each triple satisfying (i)-(iv) appears infinitely many times in the numeration, it is suffi-
ceint to satisfy Rk for all k ≥ N . In the following, we consider Rk only for k ≥ N .

At stage s = 0, each Rk has not met. At stage s ≥ h(k), if gk(t)[s] ↓ and fk(t)[s] ↓ for
some t such that v(k, s) ≤ t ≤ s, then Rk requires attention. We will construct σs as a prefix
of α so that |α − gk(t)| > 2−h(k)+ck+1 assuming s ≥ v(k) = v(k, s), by which we will show
β−βfk(t) ≤ β−βt < 2−h(k). After the stage, one may find an increase of v(k, s). In such a case,
Rk is no longer met. Notice that each requirement Rk will be injured at most finitely many
times. We will count the number of injuries later.

We now give the construction of σs. The σ0 is the empty string. For each stage s, we try
to meet the requirement Rk that requires attention. We temporarily extend σs−1 so that for
each i ≤ h(s − 1), if i is not in the domain of σs−1 then σs−1(i) = 0. For each k ≤ s, we may
change (h(k − 1) + 1)-th to h(k)-th bits of σs−1 so we can do this in parallel. Let ` be the
smallest multiple of 4 greater than ck + 1. We may assume that h(k − 1) + 1 ≤ h(k) − `. If
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gk(s) satisfies property (16) with h(k − 1) + 1-th to h(k) − `-th bits and gk(s) and σs−1 have
the same (h(k)− `− 3)-th to (h(k)− `)-th bits, then we define σs by modifying σs−1 so that

• σs satisfies property (16) with (h(k − 1) + 1)-th to h(k)-th bits.
• at least one digit between the (h(k)− `− 3)-th and (h(k)− `)-th digits of the strings
σs and gk(s) is different,

Otherwise, let σs be the string σs−1 modified above. Finally, we set α = lims σs.
The relation α �K β is immediate from the construction, the reason for which was already

explained above.
We claim that α 6≤S β. Suppose that, for some k, we have

|α− gk(s)| ≤ 2ck(β − βfk(s) + 2−s) (18)

for all s. Since v(k) will stabilize eventually, there exist s, t such that

s ≥ h(k), v(k, s) = v(k) ≤ t ≤ s, gk(t)[s] ↓, and fk(t)[s] ↓ .

Since σs and gk(t) differ in at least one of the (h(k − 1) + 1)-th through (h(k)− `)-th bits, we
have

|α− gk(t)| > 2−h(k)+` > 2−h(k)+ck+1. (19)

In contrast, since v(k) ≤ t, we have βt � h(k) = β � h(k) and

β − βfk(t) ≤ β − βt < 2−h(k),

which implies

2ck(β − βfk(t) + 2−t) ≤ 2−h(k)+ck + 2−v(k)+ck ≤ 2−h(k)+ck+1, (20)

where the second inequality follows from the inequality (17). However, the inequalities (19)
and (20) contradict with the assumption (18).

Now we show that α is weakly computable by letting h grow fast enough. When defining
σs, the difference of two reals corresponding to σs−1 and σs is at most 2−h(k)+ck+O(1) for each
k. The number of the change of v(k, s) is bounded by the number of the change of βs � h(k)

(because (βs)s is increasing), which is at most 22h(k)/3. Thus, the total difference is, at most∑
k

22h(k)/3 × 2−h(k)+ck+O(1),

which is finite if h grows fast enough. �
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