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Abstract. Solovay reducibility, a fundamental concept in algorithmic random-
ness, is used to study the relative randomness of real numbers. This paper ex-
amines how changing quantifiers in the definition of Solovay reducibility affects
its application to left-c.e. reals and computably approximable (c.a.) reals. For
left-c.e. reals, using a universal quantifier for the first sequence yields an equiv-
alent notion of reducibility. However, for c.a. reals, this equivalence holds only
when considering computable subsequences. Our study focuses on this difference
observed in c.a. reals as its central result. Additionally, we propose a more robust
definition of Solovay reducibility for c.a. reals.
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1. Introduction

Solovay reducibility, a key concept in algorithmic randomness, allows us to com-
pare the randomness of real numbers by looking at how quickly they can be approx-
imated. It has become an essential tool for understanding how real numbers are
structured in computability theory. This paper explores variations in characteriza-
tions of this important concept, focusing on how different quantifier choices affect
its application to various types of real numbers.

Originally introduced by Solovay [6], the concept involves a relation between two
reals, α and β, using a function from Q to Q that computably transforms an ap-
proximation of β to that of α (Definition 2.1). Later, Downey et al. [1, Lemma
2.3] characterized Solovay reducibility for left-c.e. reals using increasing computable
approximations (an)n and (bn)n of α and β respectively (Proposition 2.2).

For left-c.e. reals, using universal (∀) or existential (∃) quantifiers for (an)n and
(bn)n often leads to equivalent concepts (see Section 2). However, the original defi-
nition of Solovay reducibility works well for left-c.e. reals but not for other reals [2,
Proposition 9.6.1].

Zheng and Rettinger [7] introduced a new Solovay reducibility for computably
approximable (c.a.) reals, which coincides with the original concept for left-c.e.
reals and behaves better for c.a. reals [5]. The new notion is denoted by ≤2a

S in the
original paper [7], but we just call it Solovay reducibility and denote it by ≤S. Their
definition uses ∃ for both (an)n and (bn)n (Definition 3.1).

Some researchers believe this robustness also applies to c.a. reals (Remark 3.2).
However, this paper aims to show that this is not true. We demonstrate that altering
an existential quantifier (∃) to a universal quantifier (∀) in the definition of Solovay
reducibility for c.a. reals leads to a different notion (Theorems 4.1 and 5.1), which
are main results of this paper.

The structure of this paper is as follows: In Section 2, we present observations
on Solovay reducibility for left-c.e. reals. We consider some quantifier variations
in Solovay reducibility and prove that some of them are equivalent and others are
not. In Section 3, we extend our analysis to c.a. reals, examining similar quantifier
variations in Solovay reducibility for this broader class of reals. We investigate
which variations remain equivalent and which lead to distinct notions in this context.
In Section 4 and 5, we demonstrate the non-equivalence that arises when altering
quantifiers, supported by specific counterexamples. In Section 6, we introduce a
more robust definition of Solovay reducibility for c.a. reals, addressing the issues
identified in previous sections.



QUANTIFIER VARIATIONS IN SOLOVAY REDUCIBILITY 3

2. Variants of Solovay reducibility for left-c.e. reals

In this section, we aim to demonstrate the equivalence or non-equivalence of
quantifier variations, using either “exists” (∃) or “forall” (∀), in the characterization
of Solovay reducibility for left-c.e. reals based on computable approximations by
sequences.

2.1. Definition and characterization. Let EC, LC and CA be the set of all com-
putable, left-c.e., and computably approximable reals, respectively. For α ∈ CA,
let CS(α) be the set of all computable sequences of rationals converging to α. For
α ∈ LC, let ICS(α) be the set of all increasing computable sequences of rationals
converging to α. For α ∈ LC, let ICS0(α) be the set of all nondecreasing com-
putable sequence of rationals converging to α. Let S be the set of all nondecreasing
unbounded computable functions from ω to ω. For ease of reference, we summarize
these definitions below in Table 1:

Set Description
EC Computable reals
LC Left-c.e. reals
CA Computably approximable reals
CS(α) Computable sequences → α

ICS(α) Increasing computable sequences → α

ICS0(α) Nondecreasing computable sequences → α

S Nondecreasing unbounded computable sequences
Table 1. Definition of sets

The original definition of Solovay reducibility uses a partial computable function
that transforms an approximation of one real to an approximation of the other real.

Definition 2.1 (Solovay [6]). Let α, β ∈ LC. We say that α is Solovay reducible to
β, denoted by α ≤S β, if there are a partial computable function f :⊆ Q → Q and
c ∈ ω such that, if q ∈ Q and q < β, then f(q) ↓< α and α− f(q) < c(β − q).

Solovay reducibility for left-c.e. reals can be characterized by computable se-
quences approaching α and β. We will primarily use the characterization below
in this section.

Proposition 2.2 (Downey et al. [1, Lemma 2.3] ). Let α, β ∈ LC, (as)s ∈ ICS(α),
and (bs)s ∈ ICS(β). Then, α ≤S β if and only if there are a function g ∈ S and a
constant c ∈ ω such that α− ag(s) < c(β − bs) for all s ∈ ω.

2.2. Variations. Solovay reducibility for left-c.e. reals is known to be somewhat
robust even under changes in quantification. In what follows, we will enumerate
(almost) all possible scenarios.
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Let α, β ∈ LC, (as)s ∈ ICS(α), and (bs)s ∈ ICS(β). Let PL
0 , P

L
a , P

L
b be the

relations of them defined by the following:

PL
0 :(∃q ∈ ω)(∀s ∈ ω)[α− as < q(β − bs)], (1)

PL
a :(∃g ∈ S)(∃q ∈ ω)(∀s ∈ ω)[α− ag(s) < q(β − bs)], (2)

PL
b :(∃g ∈ S)(∃q ∈ ω)(∀s ∈ ω)[α− as < q(β − bg(s))]. (3)

Then, we consider the following conditions for α, β ∈ LC:
(L-I) (∃(as))(∃(bs))PL

0 ,
(L-II) (∀(bs))(∃(as))PL

0 ,
(L-III) (∀(as))(∃(bs))PL

0 ,
(L-IV) (∃(bs))(∀(as))PL

0 ,
(L-V) (∃(as))(∀(bs))PL

0 ,
(L-VI) (∀(as))(∀(bs))PL

0 .
We also consider the following subsequence versions:

(L-VI-S1) (∀(as))(∀(bs))PL
a ,

(L-VI-S2) (∀(as))(∀(bs))PL
b .

In this context, we assume (as)s ∈ ICS(α) and (bs)s ∈ ICS(β) when considering the
quantifiers.

The goal of this section is to show that α ≤S β and each condition (L-I), (L-
II), (L-III), (L-VI-S1), and (L-VI-S2) are mutually equivalent, and each condition
(L-IV), (L-V), and (L-VI) is not equivalent to α ≤S β. The order of the proofs is
illustrated in Figure 1.

(L-VI-S1) (L-II)

(L-VI-S2) (L-III)

(L-I)

Figure 1. The order of the proofs

Proposition 2.3. Let α, β ∈ LC. Then, α ≤S β and each condition (L-I), (L-II),
and (L-VI-S1) are mutually equivalent.

Proof. Proposition 2.2 states that α ≤S β is equivalent to condition (L-VI-S1).
Assume condition (L-VI-S1). Since (as)s is increasing, we can further impose that

the function g ∈ S is strictly increasing. Thus, condition (L-II) holds.
The fact that condition (L-II) implies condition (L-I) is immediate from the defi-

nition.
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Assume condition (L-I) and let (as)s and (bs)s be its witness. By considering
Proposition 2.2 for this pair, the condition is met by letting g be the identity function
and c as q, which concludes α ≤S β. �

Proposition 2.4. Let α, β ∈ LC. Then, each condition (L-I), (L-III), (L-VI-S2)
are mutually equivalent.

Proof. (L-VI-S1) =⇒ (L-VI-S2).
Let (as)s ∈ ICS(α) and (bs)s ∈ ICS(β). By (L-VI-S1), there exist a function

g ∈ S and q ∈ ω with which PL
a holds. We further assume that g(0) = 0 and g is

increasing by redefining q as a larger integer if necessary. (This trick is necessary to
define h(0) below.) We define a function h : ω → ω by

h(t) = max{s : g(s) ≤ t}.

The function h(t) is similar to an inverse function in that it finds the largest s for
which g(s) does not exceed t. Then, h is nondecreasing, unbounded and computable,
thus h ∈ S. Furthermore, by letting s = h(t), we have

α− at ≤ α− ag(s) < q(β − bs) = q(β − bh(t)),

which implies that PL
b holds. Thus, the claim is proven.

(L-VI-S2) =⇒ (L-III).
Assume (an)n ∈ ICS(α) and (bs)s ∈ ICS(β). By condition (L-VI-S2), there exists

a function g ∈ S with which PL
b holds.

If g is increasing, then let ds = bg(s) and we are done. For the case that g is
not increasing, the inputs n that yield the same value when g is applied need to be
dispersed so that (ds)s is increasing as in Figure 2.

s
Is

i i + 1 js

bg(s)bg(s)−1

di di+1 djds

Figure 2. Definition of (ds)s

For each s ∈ ω, let Is = {t : g(s) = g(t)}. Note that g ∈ S. Since g is
nondecreasing and unbounded, Is is a finite set for each s. Furthermore, since g is
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computable, so is Is. Let m = |Is| be the number of the elements in Is and suppose
that s is the k-th smallest element in Is. We define ds as follows. If g(s) = 0, then

ds = b0 − 1 +
k

m
.

If g(s) > 0, then

ds = bg(s)−1 +
k

m
(bg(s) − bg(s)−1).

The sequence (ds)s is increasing and computable, thus (ds)s ∈ ICS(β). Since ds ≤
bg(s), we have

α− as < q(β − bg(s))) ≤ q(β − ds).

Thus, condition (L-III) holds.

(L-III) =⇒ (L-I).
This is immediate from the definition. �

Each condition (L-IV), (L-V), (L-VI) is not equivalent to Solovay reducibility as
shown below.

Example 2.5. Let α, β ∈ EC. Then, α ≤S β holds. However, none of the condi-
tions (L-IV), (L-V), or (L-VI) holds for this pair of α and β. As (L-V), for example,
for any approximation (an), we can construct (bn) the convergence rate of which is
much faster.

Remark 2.6. If β ∈ LC is Martin-Löf random, then the strongest condition (L-VI)
holds for any α ∈ LC by a result of Kučera and Slaman [3]. See also Miller [4,
Lemma 1.1]. Thus, all of the six conditions, from (L-I) to (L-VI), are equivalent in
this case.

3. Variants of Solovay reducibility for c.a. reals

After examining quantifier variants of Solovay reducibility for left-c.e. reals in the
previous section, we now focus on computably approximable (c.a.) reals.

3.1. Definition. The original definition of Solovay reducibility is well-suited for left-
c.e. reals but not for other classes of reals; see Section 1 for a reference. Zheng and
Rettinger [7] introduced an alternative definition of Solovay reducibility specifically
for c.a. reals. This new definition coincides with the original one for left-c.e. reals
(Definition 2.1) and behaves better even outside of left-c.e. reals.

Definition 3.1. Let α, β ∈ CA. We say that α is Solovay reducible to β, denoted
by α ≤S β, if there exist sequences (as)s ∈ CS(α), (bs)s ∈ CS(β), and a constant
q ∈ ω such that

|α− as| < q(|β − bs|+ 2−s)

for all s ∈ ω.
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3.2. Variants. We consider corresponding variants of the conditions in the previous
sections for c.a. reals. Let P0, Pa, Pb be the relations defined by the following:

P0 :(∃q ∈ ω)(∀s ∈ ω)[|α− as| < q(|β − bs|+ 2−s)],

Pa :(∃q ∈ ω)(∀s ∈ ω)[|α− ag(s)| < q(|β − bs|+ 2−s)],

Pb :(∃q ∈ ω)(∀s ∈ ω)[|α− as| < q(|β − bg(s)|+ 2−s)].

Then, we consider the following conditions for α, β ∈ CA:
(I) (∃(as))(∃(bs))P0,

(II) (∀(bs))(∃(as))P0,
(III) (∀(as))(∃(bs))P0,

We also consider the following subsequence versions:
(II-S) (∀(bs))(∃(as))(∃g ∈ S)Pb,

(III-S) (∀(as))(∃(bs))(∃g ∈ S)Pa,
In this context, we assume (as)s ∈ CS(α) and (bs)s ∈ CS(β) when considering the
quantifiers.

Notice that condition (I) rephrases the definition of Solovay reducibility for c.a.
reals. The goal of this section is to show that conditions (I), (II-S), and (III-S) are
mutually equivalent. In later sections, we prove that conditions (II) and (III) are
not equivalent to condition (I).

Remark 3.2. Rettinger and Zheng [5, Lemma 3.2] incorrectly claimed that conditions
(I) and (II) are equivalent without giving details of the proof. The difference between
(I) and (II) is subtle, but it requires careful consideration.

Proposition 3.3. Let α, β ∈ CA. Then, conditions (I) and (II-S) are equivalent.

Proof. Notice that condition (II-S) implies (I). In the case of left-c.e. reals (L-I), it
was necessary for (bs)s to be in ICS(β). For c.a. reals, it suffices that (bs)s belongs
to CS(β). Since (bs)s now does not need to be increasing, the claim concludes easily.

Suppose condition (I) holds via (as)s ∈ CS(α), (bs)s ∈ CS(β), and q ∈ ω. Let
(ds)s ∈ CS(β) be given. We construct a function g ∈ S. For each t ∈ ω, pick up
s ∈ ω such that

s ≥ t+ 1, |bs − ds| < 2−t−1,

and let g(t) be such s. We can further impose that g is strictly increasing and
computable. Then,

|α− ag(t)| < q(|β − bg(t)|+ 2−g(t)) ≤ q(|β − dg(t)|+ |bg(t) − dg(t)|+ 2−g(t))

≤ q(|β − dg(t)|+ 2−t).

Hence, the pair g and (ag(t))t serves as a witness for condition (II-S). �

Proposition 3.4. Let α, β ∈ CA. Then, conditions (I) and (III-S) are equivalent.
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The proof is similar to that of Proposition 3.3.

Proof. Notice that condition (III-S) implies condition (I).
Suppose that condition (I) holds via (as)s ∈ CS(α), (bs)s ∈ CS(β), and q ∈ ω.

Suppose that (cs)s ∈ CS(α) is given. For each t ∈ ω, pick up s ∈ ω such that

s ≥ t+ 1, |as − cs| < 2−t−1,

and let g(t) be such s. We can further impose that g is strictly increasing and
computable. Then,

|α− cg(t)| ≤ |α− ag(t)|+ 2−t−1

< q(|β − bg(t)|+ 2−g(t)) + 2−t−1

≤ q(|β − bg(t)|+ 2−t).

Thus, (bg(t))t and g is a witness for condition (III-S). �

4. First counterexample

In this section, we prove that condition (II) is strictly stronger than (I). Recall
that Proposition 2.3 asserts the equivalence of conditions (L-I) and (L-II) for left-c.e.
reals. We have also shown in Proposition 3.3 that (I) and the subsequence version
(II-S) of (II) are equivalent. This is a difference between Solovay reducibility for
left-c.e. reals and for c.a. reals.

4.1. Claim.

Theorem 4.1. There exists a pair of α, β ∈ CA such that condition (I) holds, but
condition (II) does not hold. Furthermore, we can impose α, β ∈ LC.

Remark 4.2. For left-c.e. reals α, β ∈ LC, Solovay reducibility for left-c.e. reals
is equivalent to that for c.a. reals; in other words, conditions (L-I) and (I) are
equivalent. We have also seen that conditions (L-I) and (L-II) are equivalent. These
facts do not contradict the theorem stated above.

We construct (as)s and (bs)s for condition (I) and their limits are α and β, re-
spectively:

∃(as)s ∈ CS(α)∃(bs)s ∈ CS(β)∃q ∈ ω∀s ∈ ω[|α− as| < q|β − bs|+ 2−s].

In fact, we impose α, β ∈ LC and enforce a stronger condition:

∃(as)s ∈ ICS0(α)∃(bs)s ∈ ICS0(β)∀s ∈ ω[0 < α− as ≤ β − bs]. (4)

We enforce the negation of condition (II), that is,

∃(ds)s ∈ CS(β)∀(cs)s ∈ CS(α)∀q ∈ ω∃t ∈ ω[|α− ct| ≥ q(|β − dt|+ 2−t)]. (5)

We will also construct (ds)s.
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For condition (I) or the stronger condition (4), the range of possible values for α

is quite restricted if β is close to some bs, but the range of possible values of α is
relatively wide if β is far away from each of (bs)s. We select (ds)s so that it remains
far from (bs)s. Suppose some ct is given. Then we force β to be sufficiently close to
dt. Since the possible value of α is relatively wide, we can force conditions (I) and
(5) for this (cs)s.

We require that (as)s and (bs)s are nondecreasing, which implies that α, β are left-
c.e. In contrast, we cannot further require that (ds)s is nondecreasing in condition
(5). For contradiction, suppose that (ds)s is nondecreasing. We can further assume
that (as)s, (bs)s are increasing by taking subsequences. Let g ∈ S be such that
(dg(s))s is increasing. By condition (I), we have

α− as < q(β − (bs − 2−s))

for all s. Thus, condition (L-I) holds via (as)s and (bs − 2−s)s. By Proposition 2.3,
condition (L-II) holds. Since (dg(s))s is increasing, there exist a sequence (cs)s ∈
ICS(α) and q ∈ ω such that

α− cs < q(β − dg(s))

for all s ∈ ω. By repeating, we can find (c′s)s ∈ ICS(α) such that

α− c′s < q(β − ds)

for all s ∈ ω, which implies condition (II), a contradiction.

4.2. Local strategy. As a warmup, fix a total computable function fe : ω → Q to
possibly denote a sequence (cs)s and fix qe ∈ ω. We later diagonalize all such pairs.

The strategy has four states.

• Sleeping state: Do nothing.
• Preparing state (s ≤ t): Choose t ∈ ω for a witness of (5) and define as, bs, ds

for s ≤ t.
• Waiting state (t < s < u): Wait until fe(t) is defined at stage u.
• Forcing state (s ≥ u): Select a new forcing region D, and adjust the moving

area of as, bs, ds accordingly.

The initial forcing region is the unit square D = [x0, x1]× [y0, y1] = [0, 1]× [0, 1].
Sleeping state.

Wait until all requirements with higher priorities has become waiting or forcing
states. We are currently considering a single strategy, and the strategy is not sleeping
at any stage.
Preparing state.

The main task in this state is to choose t and wait until stage t. The number t

will be the witness of (5) and we need to put dt in an appropriate place.
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A A A ASleeping Preparing Waiting Forcing

Injury

All requirements with higher priorities 
are in waiting or forcing states.

State transition of Re

Stage  has come.t(e)

fe(t(e)) ↓

Figure 3. State transition

(bs, as)
x0

dtε

dt − ε − x0

fe(t)

2q(ε + 2−t)

D′￼

Length

Length

Length

x1
y0

y1

P0 P1

P2
P3

Figure 4. Local strategy

When the strategy is newly active (or at stage s = 0 in the local strategy), pick up
a sufficiently large t ∈ ω, which we will specify in (9) later. The strategy continues
to be preparing for the stage s ≤ t. Then, define (bs, as) to be the bottom-left vertex
of the forcing region and ds to lie somewhere along the x-coodinate of the forcing
region, say,

bs = 0, as = 0, ds = 1/2 (6)

for all s ≤ t.
Waiting state.

For the stage s > t, as long as fe(t) is not defined at stage s, the strategy is in the
waiting state and define bs, as, ds by the equation (6). When running the combined
strategy later, we need to define them differently.
Forcing state.
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Suppose that fe(t) is defined exactly at stage u. For the stage s ≥ u, the strategy
is in the forcing state.

When the strategy is newly forcing at stage u, construct a new forcing region
D′ = [x′

0, x
′
1]× [y′0, y

′
1] as Figure 4. Let ε > 0 be a sufficiently small rational.

To satisfy condition (I), let us focus on the rectangle P0P1P2P3 defined by

D′′ = [dt − ε, dt]× [y0, y0 + dt − ε− x0]. (7)

Since the (old) forcing region D is a square, the distance between P0 and (x0, y0)

is the same as between P0 and P3. The region D′′ is contained in the bottom-right
triangle. Thus, if (β, α) is in the region D′′, we have

α− as ≤ dt − ε− x0 ≤ β − bs

for all s < u, which implies condition (I) with q = 1 for all s < u.
To satisfy condition (5), it is sufficient for the new region D′ to avoid the rectangle

D′′′ = [dt − ε, dt]× [fe(t)− qe(ε+ 2−t), fe(t) + qe(ε+ 2−t)]. (8)

as long as the region is in the rectangle D′′ defined in (7).
We can pick up such a square D′ with the side length ε if the height of D′′ defined

in (7) is sufficiently longer than that of D′′′ defined (8), say,

2ε+ 2qe(ε+ 2−t) ≤ dt − ε− x0,

which is equivalent to

ε ≤ dt − x0 − 2qe2
−t

2qe + 3
. (9)

Notice that we have determined dt − x0 = 1/2 before choosing t. Thus, at the
beginning of the preparing state, we can choose t so that the right-hand side of
(9) is positive. At the beginning of the forcing state, we choose ε > 0 so that the
inequality (9) holds.

For stages s ≥ u (or when the strategy is in the forcing state), we define (bs, as)

and (ds, as) within D′, for instance,

bs = x′
0, as = y′0, ds = x′

0.

Finally, let α = lims as and β = lims bs. This is the end of construction.
Now, we verify some properties assuming fe is total. By way of construction,

(as)s and (bs)s are nondecreasing computable sequence of rationals converging to
α, β, respectively, thus α, β are left-c.e. We also have (ds)s ∈ CS(β).

We assert that condition (I) holds. Fix s ∈ ω. If s < u (or when the strategy is in
the preparing or waiting state at stage s), we have already shown this. If s ≥ u (or
when the strategy in the forcing state at stage s), we have α = as. Thus, condition
(I) holds.
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We claim condition (II) does not hold with ct = fe(t) and qe fixed above. This is
because, by condition (8),

|α− fe(t)| ≥ qe(ε+ 2−t) ≥ qe(|β − dt|+ 2−t).

4.3. Idea of combined strategy. Condition (5) requires verifying all possible
pairings of (cn)n and q. Since we can not computably enumerate all computable
sequences of rationals, we computably enumerate all partial computable functions.
Let ((fe, qe))e be a computable enumeration of all possible pairs of partial com-
putable functions from ω to Q and positive rationals.

We will construct nondecreasing (as)s and (bs)s for which condition (I) holds with
q = 1. We will also construct (ds)s. More concretely, we will define as, bs, and ds at
stage s. We set the requirement as follows:

Re : (∃t ∈ ω)[fe(t) ↓⇒ |α− fe(t)| ≥ qe(|β − dt|+ 2−t)].

We further assume that if fe(t) is defined at stage s, then s > t. We employ the
finite injury priority argument along the following priority of requirements:

R0 > R1 > R2 > · · · .

R0 R1 Re

Wt Frc

・・・

・・・ Prp Slp

・・・

・・・

PrpWt

Re+1

s ≤ t(e)
Stage

s > t(e)
Stage

Slp

Figure 5. Transition of the preparing state

Each requirement is in one of the four states: sleeping, preparing, waiting, or
forcing. Each preparing, waiting, or forcing Re is associated with the witness number
t(e) ∈ ω. Each forcing requirement Re is associated with the forcing region De.
Notice that the witness number t(e) and the region De are both dynamic; they
change after an injury.
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Only one requirement is in the preparing state at each stage s, usually denoted
by Rm = Rm(s). The requirements with higher priorities than Rm are in waiting or
forcing states. The requirements with lower priorities than Rm are in sleeping state.

If Re is in the preparing state at stage s, then it continues to be in the preparing
state until the stage t(e) unless an injury occurs. At stage s = t(e) + 1, Re is in the
waiting state and the next requirement Re+1 is in the preparing state as in Figure
5.

R0 R1 Rn

Wt Wt

・・・

・・・ Wt

・・・

・・・

PrpFrc

Rj

s < u
Stage

s = u
Stage

Prp

Slp Slp

Rk

Frc

Rn+1

*

Figure 6. Injury

If n is the smallest index such tat fn(t(n)) converges exactly at stage u, then Rn

is in the forcing state, Rn+1 is in the preparing state, and all requirements Re for
e > n+ 1 are in the sleeping state at stage u as in Figure 6. We say that Rn causes
an injury in this case.

Let Rn be the requirement with the lowest priority among those in the forcing
state and Rm be in the preparing state. By Dn = [xn

0 , x
n
1 ]× [yn0 , y

n
1 ], we denote the

region forced by Rn. Then, we define (bs, as) as the lower-left corner of Dn. The real
value ds depends on which requirement Rm is in the preparing state. If Rn+1 = Rm

is preparing, then ds = xn
1 , which is the x-coordinate of the right side of the square

Dn. When a requirement of a larger suffix enters preparing state (in other words,
when m increases) in a later stage, say stage u, a value smaller than ds is chosen as
du. Figure 7 indicates locations that may be chosen as du depending on preparing
requirements.

If Rn′ causes an injury, then a new forcing region will be created along the line
x = dt(n′). Then the candidates of d for lower requirements Rn′+1, Rn′+2, · · · are
canceled. Afterwords, d for these requirements will be redefined inside the new
forcing region Dn′ .
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Dn

as
bs

ds if Rnd for Rn+2

d for Rn+3d for Rn+4

 is preparing 

Figure 7. Definition of ds

Notice that d for higher requirements Rn+1, . . . , Rn′−1 are larger than dt(n′). Thus,
if Rn′ is injured by some of these requirements, then we can create a new forcing
region on the right side of Dn′ . This ensures that (as)s and (bs)s are nondecreasing.

4.4. Construction. We give a concrete construction here.
Let Rn(s) be the requirement with the lowest priority among those in the forcing

state at stage s. If such an requirement does not exist, let n(s) = −1. Let Rm(s) be
the preparing requirement at stage s.

The initial forcing region is given by

D−1 = [0, 1]× [0, 1].

For each stage s, we do the following five tasks.
(a) Update the states.
(b) Define Dn (if necessary).
(c) Define t (if necessary).
(d) Define (bs, as).
(e) Define ds.

(a) At stage s = 0, R0 is in the preparing state and all other requirements are in
the sleeping state.

At stage s ≥ 1, first check whether an injury occurs. In other words, for each
requirement Re in the waiting state at stage s−1 associated with the witness number
t(e, s − 1), check whether fe(t(e, s − 1)) is defined at stage s. If such requirements
exist, then an injury occurs.

Suppose an injury occurs. Then, let Rn(s) be the requirement with the highest
priority among those requirements. At stage s, Re is in the same state as stage s−1
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for e < n(s), Rn(s) is the forcing state, Rn(s)+1 is in the preparing state, and all other
requirements in the sleeping state as in Figure 6.

Suppose no injury occurs at stage s. Then, check whether the preparing re-
quirement in the previous stage has done its job. Let Rm(s−1) be the preparing
requirement and t(m(s − 1)) be its witness number. If s ≤ t(m(s − 1)), then all
requirements at stage s remain in the same states as stage s− 1. If s > t(m(s− 1)),
then Ri is in the same state as stage s−1 for i < m(s−1), Rm(s−1) is in the waiting
state, Rm(s) = Rm(s−1)+1 is in the preparing stage, and all other requirements with
lower priorities are in the sleeping state as in Figure 5 with e = m(s− 1).

(b) If an injury occurs, we create a new forcing region. Suppose that the requirement
Rn = Rn(s) causes an injury. Then Rn has the lowest priority among all requirements
in the forcing state. Let Rk be the forcing requirement with the next lowest priority.
Note that k < n. If no such requirement exists, let k = −1. We create a new forcing
region Dn for this requirement Rn in the forcing region Dk = [xk

0, x
k
1]× [yk0 , y

k
1 ]. Let

t = t(n) be the witness number for Rn.
We consider the following two cases.

(b-1) The previous forcing region Dp is in the current Dk.
(b-2) No forcing region is created in the current Dk.

Dk

Dp

Dn

dt(p) dt(n)

ε

ε(p)

yp
1

Length

Length

dt(n) − ε − dt(p) − ε(p)
Length

Figure 8. Construction of Dn

(b-1) At stage s−1, Rp is the requirement in the forcing state with the next highest
priority to Rk. The Dp is the previous immediate child of Dk and may not be the
narrowest forcing region in the previous stage s− 1. Note that k < n < p. Let

Dp = [dt(p) − ε(p), dt(p)]× [yp1 − ε(p), yp1].

We choose a square Dn with side length ε such that

Dn ⊆ [dt − ε, dt]× [yp1, y
p
1 + L], (10)
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where
L = dt − ε− dt(p) − ε(p), (11)

and Dn is disjoint from

[dt − ε, dt]× [fn(t)− qn(ε+ 2−t), fn(t) + qn(ε+ 2−t)] (12)

as in Figure 8. We further assume that

ε < 2k−n−1(xk
1 − xk

0) (13)

so that the existence of Dn can be proved by induction.
(b-2) In this case, the situation is similar to that in Figure 4. We choose a square
Dk in a similar manner by regarding Dp as the point of the lower-left corner of Dn

in Figure 8.

(c) Suppose that Rm is in the new preparing requirement at stage s. We define the
witness number t = t(m) > s for Rm such that

2n−m−1(xn
1 − xn

0 )− 2qm2
−t > 0 (14)

where n = n(s). The witness number of each non-new preparing, waiting, and
forcing requirement Re remains the same as stage s− 1. Each sleeping requirement
does not have the witness number.

(d) We define (bs, as) as the the lower-left point of Dn forced by Rn where n = n(s).

(e) Let Rm = Rm(s), Rn = Rn(s), and Dn = [xn
0 , x

n
1 ]× [yn0 , y

n
1 ]. We define

ds = xn
0 + 2n−m+1(xn

1 − xn
0 ) (15)

as in Figure 7.
Finally, let α = lims as and β = lims bs. This is the end of construction.

4.5. Verification. We claim that we can find such Dn in (b). We give a proof for
case (b-1). The following inequality is a sufficient condition:

2ε+ 2qn(ε+ 2−t) ≤ L,

where L is the height of the possible region (10).
Now, m(t(n)), the preparing requirement at stage t(n), is Rn; recall Figure 5. In

other words,
n = m(t(n)). (16)

The requirement with lowest priorities among those in the forcing state at stage t(n)

is Rk. Thus, the definition of ds in equation (15) can be rewritten by

dt(n) = xk
0 + 2k−m(t(n))+1(xk

1 − xk
0) = xk

0 + 2k−n(xk
1 − xk

0),
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Hence, we can evaluate L by (11) from below as follows:

L = dt(n) − dt(p) − ε− ε(p)

> 2k−n(xk
1 − xk

0)− ε− 2k−n−2(xk
1 − xk

0)

> 2k−n−1(xk
1 − xk

0)− ε.

Here, we used (13) and n+ 1 ≤ p to deduce

ε(p) < 2k−p−1(xk
1 − xk

0) ≤ 2k−n−2(xk
1 − xk

0).

Thus, the following inequality is a sufficient condition of ε:

ε ≤ 2k−n−1(xk
1 − xk

0)− 2qn2
−t

2qn + 3
.

We can find such a positive rational ε by inequality (14)
Lower-left coordinates of the forcing regions are always increasing. Thus, (as)s

and (bs)s are nondecreasing and their limits, α and β, are left-c.e. By construction,
each requirement Re will be met.

Finally, we claim that α − as ≤ β − bs for each s ∈ ω. The point (bs, as) moves
only when the new forcing region Dn is created at stage s. By construction in (b),
in particular by (10), we have as − as−1 ≤ bs − bs−1 for such stages s. This implies
the claim that α− as ≤ β − bs for each s ∈ ω.

This is the end of the proof.

5. Second counterexample

In this section, we prove that condition (III) is strictly stronger than (I). The
meaning and structure of this section are similar to the previous one, but the proof
here is simpler.

5.1. Claim.

Theorem 5.1. There exist α, β ∈ CA such that condition (I) holds but condition
(III) does not. Additionally, we can impose α ∈ Q.

We define as = 0 for all s ∈ ω and α = 0. Thus, condition (I) clearly holds as
long as β ∈ CA.

The precise statement of condition (III) is

(∀(as))(∃(bs))(∃q)(∀s)[|α− as| < q(|β − bs|+ 2−s)].

Considering α = 0, we require the negation of this condition, that is,

(∃(cn)n ∈ CS(0))(∀(dn)n ∈ CS(β))(∀q ∈ ω)(∃t ∈ ω)[|ct| ≥ q(|β − dt|+ 2−t)].

We define
ct = 2−t/2.
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Then, the condition can be written as

(∀(dn)n ∈ CS(β))(∀q ∈ ω)(∃t ∈ ω)[|β − dt| ≤ re(t)],

where
re(t) = (q−1

e − 2−t/2)2−t/2.

Notice that, if t > 2 log2 qe, then q−1
e − 2−t/2 > 0 and re(t) > 0.

We computably enumerate all pairs (fe, qe) of partial computable functions from
ω to Q and positive rationals. For each e ∈ ω, we set a requirement Re by

Re : (fe(s))s ∈ CS(β) =⇒ (∃t > 2 log2 qe)[|β − fe(t)| ≤ re(t)].

These requirements are sufficient to ensure the condition above. We set the priority
of the requirements as

R0 > R1 > R2 > · · · .

5.2. Local strategy. We explain a strategy for a single requirement Re for a fixed
e. Recall that fe : ω → Q is a partial computable function, which may represent
(dn)n ∈ CS(β) and qe is a positive rational.

ct

dt

α = 0

y = ct + q( |x − dt | + 2−t)

y = ct − q( |x − dt | + 2−t)

q ⋅ 2−t

Figure 9. Possible (β, α)

We want to enforce that (β, α) is not between the two poly-lines y = ct ± q(|x−
dt|+ 2−t) for some t as in Figure 9.

Considering as = 0 for all s, we force β to be close to fe(t) when fe(t) is defined. To
respect requirements with higher priorities, the forcing interval should be contained
in the previous forcing interval, which is [0, 1] in the single strategy. Thus, we need
to wait t such that fe(t) is defined and it is in this interval.

This strategy operates in two states:
(i) Waiting state.
(ii) Forcing state.
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ct = 2−t/2

as = 0
bs

Jn

fe(t)

Je

Figure 10. Construction of Je

In the single strategy, let n = −1 and Jn = [0, 1] be the initial forcing closed
interval for β. By Je, we denote the interval forced by requirement Re.

Later, in the combined strategy, we use n as the index of the forcing requirement
with the lowest priority. If such requirement does not exist, n = −1 for convenience.

At stage s, search t ≤ s such that

t > 2 log2 qe, fe(t)[s] ↓∈ Jo
n, (17)

where Ao denotes the interior of the set A ⊆ R. If such t is found, the strategy
transitions from the waiting state to forcing state. Note that this t is similar to the
witness number in the previous section’s proof, but it cannot be fixed in advance. To
respect the previous forcing interval Jn, the new forcing interval should be contained
in it. To do this, we need to find t such that fe(t) ∈ Jo

n. Since (fe(s))s may converges
so slowly, this t may be really large.

If such t is found, we define a new forcing closed interval Je with rational endpoints
satisfying

Je ⊂ Jo
n ∩ [fe(t)− re(t), fe(t) + re(t)], 0 < |Je| ≤

1

2
|Jn|.

The bs is the midpoint of the narrowest forcing interval. Thus, bs is the midpoint
of J−1, say 1/2, initially, and bs is the midpoint of Je if defined. The limit of (bs)s
is defined to be β.

We are going to show that the requirement Re is satisfied. Suppose that (fe(s))s ∈
CS(β). Since β ∈ Jo

n regardless of whether Je is defined or not, we have fe(t) ∈ Jo
n for

a sufficiently large t. Thus, condition (17) is satisfiend and Je is eventually defined.
Hence, Re is satisfied.

5.3. Construction of combined strategy. Now we combine the previous single
strategies for all e ∈ ω to make all requirements Re satisfied. Each requirement is
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in the waiting or forcing state. If a requirement transitions from the waiting state
to the forcing state, then all requirements with lower priorities reset to the waiting
state.

Each forcing requirement Re is associated with the forcing closed interval Je,s,
which changes as stage s goes. For convenience, let J−1,s = [0, 1] for all s ∈ ω. Let
n(e, s) denote the index of the forcing requirement with the lowest priority among
those with higher priority than Re at stage s. For example, if requirements R1, R3 are
in the forcing state and R0, R2 are in the waiting state at stage s, then n(0, s) = −1,
n(2, s) = 1 and n(4, s) = 3.

We will define bs at stage s.
For each stage s, we do the following three tasks.

(a) Update the states.
(b) Define Jn,s.
(c) Define bs.

(a) For each e ≤ s such that Re is in the waiting state at s − 1, search t ≤ s such
that

t > 2 log2 qe, fe(t)[s] ↓∈ Jo
n(e,s−1),s−1, (18)

where Ao is the interior of the set A ⊆ R. If such Re exists, then an injury occurs.
If an injury occurs, let Rk be the requirement with the highest priority among

those requirements. At stage s, each Re for e < k is in the same state as stage s−1,
Rk is in the forcing state, and Re for e > k is in the waiting state.

If no injury occurs, all requirements are in the same state as stage s− 1.

(b) For each waiting requirement Re, Je,s is undefined.
If no injury occurs, all forcing intervals Je,s of forcing requirement Re are the same

as Je,s−1.
If an injury occurs, we define a new forcing interval. Let Rk be the new forcing

requirement and let Rn be the forcing requirement with the next lowest priority.
Note that n = n(k, s). For any forcing requirement Re other than Rk, let Je,s =

Je,s−1.
We define a new forcing closed interval Jk,s with rational endpoints satisfying

Jk,s ⊆ Jo
n,s ∩ [fk(t)− rk(t), fk(t) + rk(t)], 0 < |Jk,s| ≤

1

2
|Jn,s|,

where t is the witness found for Rk in (a).

(c) Let Re be the forcing requirement with the lowest priority. Let bs be the midpoint
of Je,s.

Finally, let β be the limit of (bs)s. This is the end of the construction.
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5.4. Verification. We claim that for each e ∈ ω, Je,s stabilizes to a closed interval,
which is denoted by Je, or is undefined for all sufficiently large s. Notice that each
requirement Re is injured only by those with higher priority, which are finite. Thus,
the claim can be proved by induction on e. By the same reason, n(e, s) converges
to, say, n(e).

Next, we claim that (bs)s converges. For each e such that Je is defined, bs is in
the interval Je for all sufficiently large s. Since the lengths of the forcing intervals
Je decreases to 0, the sequence (bs)s converges.

Since α = 0 and β ∈ CA, condition (I) clearly holds.
We claim that, for each e ∈ ω, the requirement Re is satisfied. Suppose that

(fe(s))s ∈ CS(β). Since β ∈ Jo
n(e), fe(s) ∈ Jo

n(e) for all sufficiently large s. Thus,
condition (18) holds for all sufficiently large t. Therefore, Re will eventually enter
the forcing state. By way of construction of Je,s, the requirement Re is satisfied.
This concludes the proof.

6. Modification of error terms

We have observed that Solovay reducibility for c.a. reals is less robust than that
for left-c.e. reals. As a final remark, we demonstrate that by adjusting the error
term, robustness can be achieved concerning the choice of quantifiers.

Let R be the set of all computable sequences of positive rationals converging to 0.
For α, β ∈ CA, (as)s ∈ CS(α), and (bs)s ∈ CS(β), let PE

0 be the relations defined
by the following:

PE
0 :(∃(rs)s ∈ R)(∃q ∈ ω)(∀s ∈ ω)[|α− as| < q|β − bs|+ rs].

We then consider the following conditions for α, β ∈ CA:
(E-I) (∃(as))(∃(bs))PE

0 ,
(E-II) (∀(bs))(∃(as))PE

0 ,
(E-III) (∀(as))(∃(bs))PE

0 ,
(E-IV) (∃(bs))(∀(as))PE

0 ,
(E-V) (∃(as))(∀(bs))PE

0 ,
(E-VI) (∀(as))(∀(bs))PE

0 .
We again assume (as)s ∈ CS(α) and (bs)s ∈ CS(β) when considering these quanti-
fiers.

Proposition 6.1. For α, β ∈ CA, condition (E-I) is equivalent to α ≤S β.

Proof. If α ≤S β via (as)s and (bs)s, condition (E-I) holds via (as)s, (bs)s and
rs = 2−s.

Suppose (E-I) holds for some (as)s ∈ CS(α), (bs)s ∈ CS(β), and (rs)s ∈ R. Since
rs → 0 as s → ∞, there exists a computable increasing function g(s) such that
rg(s) ≤ 2−s. Thus, we obtain α ≤S β via (ag(s))s and (bg(s))s. �
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Theorem 6.2. Condition (E-I) implies condition (E-VI). Thus, all six conditions,
from (E-I) to (E-VI), are mutually equivalent.

Proof. Assume condition (E-I) holds for a pair (an)n ∈ CS(α) and (bn)n ∈ CS(β).
Consider (cn)n ∈ CS(α) and (dn)n ∈ CS(β). Then,

|α− cn| ≤ |α− an|+ |an − cn|

< q|β − bn|+ rn + |an − cn|

≤ q|β − dn|+ rn + |an − cn|+ q|bn − dn|.

Since rn + |an − cn| + q|bn − dn| converges to 0, PE
0 holds with this modified error

term. �

This modification improves the robustness of the definition of Solovay reducibility.

Remark 6.3. Proposition 6.1 and Theorem 6.2 provide further evidence that Solovay
reducibility is a natural notion. We have shown that conditions (II) and (III) differ
from Solovay reducibility, but we do not claim that they are unnatural.
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