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algorithmic randomness  computability theory + probability theory

Solovay reducibility concerns real numbers, not binary sequences.

Solovay reducibility is induced by a partially computable version of Lipschitz

continuous functions.

Thus, it relates both logic and analysis.

Topic

≈
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I claim that the following six are distinct concepts:

Interpret the predicate  as “  likes .”

Goal

∀x∀y P (x, y)

∀x∃y P (x, y)

∀y∃xP (x, y)

∃x∀y P (x, y)

∃y∀xP (x, y)

∃x∃y P (x, y)

P (x, y) x y
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In the case of Solovay reducibility.

Summary

Solovay reducibility for left-c.e. reals is robust.

Solovay reducibility for c.a. reals is fragile

→ Construct a counterexample via the priority method

Provide characterizations that are robust in both cases

Goal
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Definition

A real number  is left-c.e. (left-computably enumerable) if it is the limit of a

computable increasing sequence of rationals.

Definition

For left-c.e. reals , we say  is Solovay reducible to  if there exist computable

increasing sequences ,  and  such that

(∀s ∈ ω) [α − a ​ <s q (β − b ​)]s

holds.

Note: This is a commonly-used characterization, which differs slightly from the original

definition by Solovay (1975).

Definition (left-c.e. case)

α

α,β α β

(a ​) ​s s (b ​) ​s s q ∈ ω
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Define

P ​ :0
L (∃q ∈ ω)(∀s ∈ ω)[α − a ​ <s q(β − b ​)].s

Then set:

(L-I)

(L-II)

(L-III)

Here  and  range over approximation sequences.

These (L-I), (L-II), and (L-III) are all equivalent. When adding a universal quantifier in the

second place, one can take a computable subsequence to restore equivalence.

Formalization (left-c.e. case)

(∃(a ​))(∃(b ​))P ​s s 0
L

(∀(b ​))(∃(a ​))P ​s s 0
L

(∀(a ​))(∃(b ​))P ​s s 0
L

∃ ∀
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Definition

A real number  is c.a. (computably approximable or ) if it is the limit of a

computable sequence of rationals.

The sequence is not necessarily increasing.

Definition (Zheng and Rettinger 2004, S2a-reducibility)

For c.a. reals , we say  is Solovay reducible to  if there exist computable

approximations ,  and  such that

(∀s ∈ ω)[∣α − a ​∣ <s q (∣β − b ​∣ +s 2 )].−s

For left-c.e. reals, this coincides with the previous definition.

Definition (c.a. case)

α Δ ​2
0

α,β α β

(a ​) ​s s (b ​) ​s s q ∈ ω
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Define

P ​ :0 (∃q ∈ ω)(∀s ∈ ω)[∣α − a ​∣ <s q (∣β − b ​∣ +s 2 )].−s

Set:

(I)

(II)

(III)

Formalization (c.a. case)

(∃(a ​))(∃(b ​))P ​s s 0

(∀(b ​))(∃(a ​))P ​s s 0

(∀(a ​))(∃(b ​))P ​s s 0
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Are (I), (II), and (III) equivalent?

Since they were robust for left-c.e. reals, one might expect the same for c.a. reals.

Some papers assert this without proof.

One quickly sees that the left-c.e. proof does not carry over, but constructing a

counterexample is not easy.

Note: In (II), one may take a computable subsequence of ; in (III), of , to recover

equivalence with (I).

Question

(b ​)s (a ​)s
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Theorem

There exist left-c.e. reals  such that (I) holds but (II) does not.

Note: Don't be confused. This counterexample shows that definitions (I) and (II) for c.a.

reals can be witnessed by left-c.e. reals. This does not contradict the fact that the two

definitions coincide for left-c.e. reals.

Main Result

α,β
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Construct  using a finite injury priority argument.

To enforce (I), we construct increasing ,  such that

α − a ​ ≤s β − b ​ for all s ∈s ω

Negation of (II):

∃(d ​) ​ ∀(c ​) ​ ∀q ∈s s s s ω ∃t ∈ ω[∣α − c ​∣ ≥t q (∣β − d ​∣ +t 2 )],−t

build an approximation  satisfying this condition.

Proof Sketch

α,β

(a ​) ​s s (b ​) ​s s

(d ​) →s β
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If  is close to , then  should be close to . If  is far from , by letting  to be

close to , we have enough space to enforce both (I) and the negation of (II).

For simplicity, fix  and .

Choose a large . When  settles at stage , place  near the current .

An injury occurs whenever  is defined.

Key idea

β b ​s α a ​s b ​s d ​t β

d ​t

(c ​)s q

t c ​t s > t β d ​t

c ​t

4 May, 2025Quantifier Variations in Solovay Reducibility 12 / 16Kenshi Miyabe (Meiji Univ.)



Figure 1
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Enumerate all  for a sequence  converging to .

Assign priorities: .

Each requirement  has an associated forcing region , satisfying 

.

If  converges, then  may modify its forcing region , destroying all requirements

with lower priority.

Priority

f ​(t)e (c ​) ​s s α

R ​ >1 R ​ >2 ⋯

R ​e D ​e D ​ ⊃1 D ​ ⊃2 D ​ ⊃3

⋯

f ​(t)e R ​e D ​e
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Figure 2 ( )k < n < p
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By a similar method, one can also construct a counterexample where (I) holds but

(III) fails.

If the term  is replaced by any computable sequence converging to 0 (not

necessarily monotone), the notion becomes robust.

Solovay reducibility for left-c.e. reals can be characterized by Lipschitz functions;

for c.a. reals, it requires “partial Lipschitz functions,” i.e., functions not extendable

to the entire domain. This partiality manifests as the inability to interchange

quantifiers.

Be cautious when changing quantifiers.

Finally

2−s
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