Quantifier Variations in Solovay Reducibility

Kenshi Miyabe (Meiji Univ.)

American Mathematical Society 2025 Spring Western Sectional Meeting California Polytechnic, San Luis Obispo, CA

4 May, 2025

algorithmic randomness ≈ computability theory + probability theory

Solovay reducibility concerns real numbers, not binary sequences.

Solovay reducibility is induced by a partially computable version of Lipschitz continuous functions.

Thus, it relates both logic and analysis.

I claim that the following six are distinct concepts:

- $\forall x \forall y P(x, y)$
- $\forall x \exists y P(x, y)$
- $\forall y \exists x P(x, y)$
- $\exists x \forall y P(x, y)$
- $\exists y \forall x P(x, y)$
- $\exists x \exists y P(x, y)$

Interpret the predicate P(x, y) as "x likes y."

In the case of Solovay reducibility.

Summary

- Solovay reducibility for left-c.e. reals is robust.
- Solovay reducibility for c.a. reals is fragile
 - \rightarrow Construct a counterexample via the priority method
- Provide characterizations that are robust in both cases

Definition

A real number α is **left-c.e.** (left-computably enumerable) if it is the limit of a computable increasing sequence of rationals.

Definition

For left-c.e. reals α , β , we say α is **Solovay reducible** to β if there exist computable increasing sequences $(a_s)_s$, $(b_s)_s$ and $q \in \omega$ such that

$$(\forall s \in \omega) \left[\alpha - a_s < q \left(\beta - b_s \right) \right]$$

holds.

Note: This is a commonly-used characterization, which differs slightly from the original definition by Solovay (1975).

Formalization (left-c.e. case)

Define

$$P_0^L : (\exists q \in \omega) (\forall s \in \omega) [\alpha - a_s < q(\beta - b_s)].$$

Then set:

- (L-I) $(\exists (a_s))(\exists (b_s)) P_0^L$
- (L-II) $(\forall (b_s))(\exists (a_s)) P_0^L$
- (L-III) $(\forall (a_s))(\exists (b_s)) P_0^L$

Here \exists and \forall range over approximation sequences.

These (L-I), (L-II), and (L-III) are all equivalent. When adding a universal quantifier in the second place, one can take a computable subsequence to restore equivalence.

Definition

A real number α is **c.a.** (computably approximable or Δ_2^0) if it is the limit of a computable sequence of rationals.

The sequence is not necessarily increasing.

Definition (Zheng and Rettinger 2004, S2a-reducibility)

For c.a. reals α , β , we say α is **Solovay reducible** to β if there exist computable approximations $(a_s)_s$, $(b_s)_s$ and $q \in \omega$ such that

$$(\forall s \in \omega)[|\alpha - a_s| < q(|\beta - b_s| + 2^{-s})].$$

For left-c.e. reals, this coincides with the previous definition.

Define

$$P_0: (\exists q \in \omega) (\forall s \in \omega) [|\alpha - a_s| < q (|\beta - b_s| + 2^{-s})].$$

Set:

- (I) $(\exists (a_s))(\exists (b_s)) P_0$
- (II) $(\forall (b_s))(\exists (a_s)) P_0$
- (III) $(\forall (a_s))(\exists (b_s)) P_0$

Are (I), (II), and (III) equivalent?

- Since they were robust for left-c.e. reals, one might expect the same for c.a. reals.
- Some papers assert this without proof.
- One quickly sees that the left-c.e. proof does not carry over, but constructing a counterexample is not easy.

Note: In (II), one may take a computable subsequence of (b_s) ; in (III), of (a_s) , to recover equivalence with (I).

Theorem

There exist left-c.e. reals α , β such that (I) holds but (II) does not.

Note: Don't be confused. This counterexample shows that definitions (I) and (II) for c.a. reals can be witnessed by left-c.e. reals. This does not contradict the fact that the two definitions coincide for left-c.e. reals.

Construct α , β using a finite injury priority argument.

To enforce (I), we construct increasing $(a_s)_s$, $(b_s)_s$ such that

 $\alpha - a_s \leq \beta - b_s \text{ for all } s \in \omega$

Negation of (II):

$$\exists (d_s)_s \ \forall (c_s)_s \ \forall q \in \omega \ \exists t \in \omega \left[|\alpha - c_t| \ge q \left(|\beta - d_t| + 2^{-t} \right) \right],$$

build an approximation $(d_s) \rightarrow \beta$ satisfying this condition.

If β is close to b_s , then α should be close to a_s . If b_s is far from d_t , by letting β to be close to d_t , we have enough space to enforce both (I) and the negation of (II).

For simplicity, fix (c_s) and q.

Choose a large *t*. When c_t settles at stage s > t, place β near the current d_t . An injury occurs whenever c_t is defined. Figure 1

Enumerate all $f_e(t)$ for a sequence $(c_s)_s$ converging to α .

Assign priorities: $R_1 > R_2 > \cdots$.

Each requirement R_e has an associated forcing region D_e , satisfying $D_1 \supset D_2 \supset D_3 \supset \cdots$.

If $f_e(t)$ converges, then R_e may modify its forcing region D_e , destroying all requirements with lower priority.

Figure 2 (k < n < p)

- By a similar method, one can also construct a counterexample where (I) holds but (III) fails.
- If the term 2^{-s} is replaced by any computable sequence converging to 0 (not necessarily monotone), the notion becomes robust.
- Solovay reducibility for left-c.e. reals can be characterized by Lipschitz functions; for c.a. reals, it requires "partial Lipschitz functions," i.e., functions not extendable to the entire domain. This partiality manifests as the inability to interchange quantifiers.
- Be cautious when changing quantifiers.