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This research was initiated by a question posed by Laurent Bienvenu while he

was on sabbatical in Japan from July 2023 to July 2024.
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Question: What is randomness with respect to c.e. semimeasures?

Answer: We have four different notions of randomness; three of them are based

on complexity and the other is based on tests. We prove the implications and

separations among them.

Each of notions has been studied in the context of partial randomness, but

different notions turn out to be equivalent.

1-page Summary
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Randomness w.r.t. computable measures

Randomness w.r.t. c.e. semimeasures

Proof
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Randomness w.r.t. computable measures
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: uniform measure on .

 c.e. open set =  where .

ML-test : uniformly c.e. open sets with .

 is ML-random if  for any ML-test .

Martin-Löf Randomness

μ 2ω

U ⊆ 2ω ​[σ ​]⋃i i σ ​ ∈i 2<ω

(U ​) ​n n μ(U ​) ≤n 2−n

X ∈ 2ω X ∈/ ​ U ​⋂n n (U ​) ​n n
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Levin-Schnorr theorem: the following are equivalent.

 is ML-random.

.

.

Here,  is prefix-free Kolmogorov complexity and  is a priori complexity.

Levin-Schnorr theorem

X

K(X ↾ n) ≥ n − O(1)

KA(X ↾ n) ≥ n − O(1)

K KA
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A measure  on  is determined by the function .

 is computable if this function is computable.

As a natural extention of Levin-Schnorr's theorem, the following are equivalent.

 is ML-random w.r.t. .

.

.

Let .

Randomness w.r.t. computable measures

μ 2ω σ ↦ μ([σ])

μ

X μ

K(X ↾ n) ≥ − logμ(X ↾ n) − O(1)

KA(X ↾ n) ≥ − logμ(X ↾ n) − O(1)

f(σ) = − logμ([σ])
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Randomness w.r.t. c.e. semimeasures
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semimeasure:  such that

μ(ε) ≤ 1, μ(σ) ≥ μ(σ0) + μ(σ1) for all σ.

A semimeasure is c.e. if the function is lower semicomputable.

Important notion because

one can enumerate all c.e. semimeasures but not all computable measures,

there is a correspondence with a c.e. martingale, which characterizes

Martin-Löf randomness,

it is used in the definition of a priori complexity .

c.e. semimeasure

μ : 2 →<ω [0, 1]

KA
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Question: What is randomness with respect to a c.e. semimeasure?

Before answering this question, let us ask why we need such a notion.

Answer 1: Any computable function defined a.e. induces randomness w.r.t. a

computable measure; randomness preservation and no-randomness-from

nothing. But a partial computable function induces a c.e. semimeasure.

(Bienvenu, Hölzl, Porter, and Shafer 2017)

Answer 2: It gives another proof of Kučera-Gács theorem. (Barmpalias and Shen

2023)

Randomness w.r.t. c.e. semimeasures
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, usually  for a c.e. semimeasure 

(I) - -complex: .

(II) strongly - -complex:  as .

(III) - -complex: .

(IV) -ML-test: uniformly c.e. sets  with  for all .

-ML-random if  for any -ML-test .

(IV) studied by Bienvenu et al. (2017),

(I) with some conditions used by Barmpalias and Shen (2023).

Randomness w.r.t. c.e. semimeasures

f : 2 →<ω [0, ∞] f = − logμ μ

KA f KA(X ↾ n) > f(X ↾ n) − O(1)

K f K(X ↾ n) − f(X ↾ n) → ∞ n → ∞

K f K(X ↾ n) > f(X ↾ n) − O(1)

f S ​ ⊆n 2<ω
​ 2 ≤∑σ∈S ​n

−f(σ) 2−n n

f X ∈/ ​[S ​]⋂n n f (S ​) ​n n
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When is upper semicomputable and concavef

CCA2025Randomness w.r.t. c.e. semimeasures 13 / 24K. Miyabe (Meiji Univ.)



rand. w.r.t. c.e.

semimeas.

partial

randomness

comp.

of 

upper

semicomp.
computable

shape

of 
concave convex

Comparison

f

f
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When is computable by Hudelson (2013)f
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Theorem (M.)

Let  be the function induced by a c.e. semimeasure. Randomness preservation

holds for strong - -complexity but not for - -complexity in general.

It holds for (II) but not for (I).

Randomness preservation

f

K f KA f
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Barmaplias and Shen (2023) proved no-randomness-from-nothing for (I) with use

bound .

Theorem (M.)

No-randomness-from-nothing does not hold for strong - -complexity even with

use bound  in general.

It holds for (I) with use bound but not for (II) even with use bound.

No-randomness-from-nothing

2n + O(1)

K f

n + O(1)
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Proof
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According to Andreev and Kumon (2016), the follwoing result is given by Lempp,

Miller, Ng, and Turetsky (2010) in an unpublished manuscript.

Theorem

Let . Then

K(X ↾ n) − KA(X ↾ n) → ∞ as n → ∞.

As a corollary, we have (I)  (II).

We give a proof in the paper. The proof idea is from Higuchi, Hudelson, Simpson,

Yokoyama (2014).

KA and K

X ∈ 2ω

⇒
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Let .

By Kučera-Gács theorem, there exists  such that .

Let  be a Turing functional such that .

For each , let

V ​ =σ {   : Y σ ⪯ Φ }.Y

We define a c.e. semimeasure  by .

Let  be an optimal c.e. semimeasure such that . Then, there

exists  such that  for all .

Proof

X ∈ 2ω

Y ∈ 2ω X ≤ ​T Y ∈ MLR
Φ X = Φ(Y )

σ ∈ 2<ω

ν ν(σ) = μ(V ​)σ
ξ KA = − log ξ
c ​ ∈0 ω μ(V ​) =σ ν(σ) ≤ c ​ξ(σ)0 σ ∈ 2<ω
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Suppose that there exists  such that

K(X ↾ n) < KA(X ↾ n) + c ​1

for infinitely many . Then,  for infinitely many .

Let  be the universal prefix-free machine to define . Consider

W = ​ ​,
τ∈dom(U)

⋃ V ​U(τ)

where  is  enumerated as long as .

Proof

c ​ ∈1 ω

n μ(V ​) <X↾n c ​20
c ​−K(X↾n)1 n

U K

​V ​U(τ) V ​U(τ) μ(V ​) <U(τ) c ​20
c ​−∣τ ∣1
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The weight of  is bounded by

​μ( ​) ≤
τ∈dom(U)

∑ V ​U(τ) ​ c ​2 <
τ∈dom(U)

∑ 0
c ​−∣τ ∣1 ∞.

By the assumption, there are infinitely many  such that

Y ∈ V ​,μ(V ) <σ σ c ​2 .0
c ​−K(σ)1

Thus, there are infinitely many  such that

Y ∈ ​ =V ​U(τ) V ​.U(τ)

Proof

W

σ ∈ X

τ ∈ dom(U)
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Then,  is not ML-random, a contradiction.

Comment:

The proof is based on Theorem 4.5 in Higuchi, Hudelson, Simpson, Yokoyama

(2014). The theorem is about - -complexity. My contribution is to show that

we can remove the function  from the theorem and its proof.

Proof

Y

KA f

f
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Thank you for your listening!
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