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Abstract. In the theory of algorithmic randomness, it is well known that the
Solovay degrees of left-c.e. reals are dense. In this paper, we establish a correspond-
ing lower density result for degrees of the modified version of Solovay reducibility
introduced by Zheng and Rettinger. It is known that the modified reducibility
behaves better for computably approximable reals than the orignal reducibility.
We call the modified one Solovay–Zheng–Rettinger reducibility (abbreviated as
Solovay–ZR reducibility). Our proof employs a completely different strategy from
the known argument. Furthermore, we demonstrate the existence of a quasi-
minimal Solovay–ZR degree: a weakly computable real such that every left-c.e.
real Solovay–ZR-reducible to it is necessarily computable. Finally, we point out
that this notion can be regarded as the dual counterpart to variation randomness.
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1. Introduction

The theory of algorithmic randomness gives precise mathematical meanings to
the idea of a “random” real number. Among the various definitions, Martin-Löf
randomness has been studied most thoroughly.

Solovay reducibility for left-c.e. reals is a method for comparing two reals in terms
of their randomness. It enjoys several important properties—for example, it implies
Turing reducibility and connects closely with Martin-Löf randomness.

During the 2000s, the field of algorithmic randomness developed rapidly. In the
early 2000s, Downey, Hirschfeldt, and Nies [4] showed that the Solovay degrees of
left-c.e. reals are dense; that is, between any two such degrees there is another one.
This result led to many further discoveries from a degree-theoretic perspective.

The original notion of Solovay reducibility works well only for left-c.e. reals. More
generally, we consider a hierarchy of four classes of real numbers, distinguished by
how they can be approximated:

• Computable reals, which can be approximated effectively to any precision;
• Left-c.e. reals, which can be approximated from below by a non-decreasing

computable sequence of rationals;
• Weakly computable reals, whose approximations may oscillate, but whose

total variation is bounded;
• Computably approximable reals (also called c.a. reals or ∆0

2 reals), which
admit some computable converging sequence.

Zheng and Rettinger [15] extended Solovay reducibility to all c.a. reals, calling
it S2a-reducibility. This agrees with the original notion of Solovay reducibility
on left-c.e. reals and behaves well more generally. In our earlier work we simply
called it Solovay reducibility; here we adopt “Solovay–Zheng–Rettinger reducibil-
ity” (Solovay–ZR reducibility) to avoid confusion.

In this paper, we ask whether Solovay–ZR degrees for all ∆0
2 reals are dense. Recall

that the Solovay degrees of left-c.e. reals form a dense partial order. However,
this classical density argument heavily relies on the monotone nature of left-c.e.
approximations. Once we move to the broader class of computably approximable
reals, this monotonicity breaks down, and the original proof techniques cannot be
directly generalized. The main contribution of this paper is to overcome this obstacle
by introducing a novel approach based on Schnorr randomness, which allows us to
establish a lower density in the Solovay–ZR degrees of c.a. reals. Here, “lower
density” means that for every nontrivial degree, there always exists another degree
strictly between it and the computable one.
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Full density for all c.a. reals remains open. A natural next step is to examine
whether our method can be refined to establish full density.

We also exhibit a quasi-minimal Solovay–ZR degree: a noncomputable weakly
computable real whose only left-c.e. predecessors are actually computable. Thus,
even though the overall Solovay–ZR hierarchy is lower dense, there can be a small
“gap” among left-c.e. reals below a quasi-minimal degree.

In a different context, Miller [10] introduced the notion of variation randomness
for weakly computable reals. We will show that this notion can be characterized by
the condition that, in the Solovay–ZR degrees, there is no non-ML-random left-c.e.
real above it. In other words, variation randomness and quasi-minimality are dual
notions within the Solovay degrees.

Here is an outline of the paper. Section 3 explores the relationship between
Solovay–ZR reducibility and total variation, leading to a characterization of variation
randomness in terms of Solovay–ZR degrees. In Section 4, we prove the existence of
quasi-minimal Solovay–ZR degrees among weakly computable reals relative to left-
c.e. reals. This notion can be seen as the dual of variation randomness within the
Solovay–ZR framework. Finally, Section 5 establishes that the Solovay–ZR degrees
of computably approximable reals form a lower dense structure.

2. Preliminaries

For general background on algorithmic randomness, we refer the reader to [5]. In
particular, Chapter 9 provides a detailed account of the Solovay degrees of left-c.e.
reals.

2.1. Computability of reals. A function f : ⊆ ω → ω is said to be partially
computable if it can be computed by a Turing machine. The notions of computability
on the rationals Q and on sequences over Q are naturally induced.

A real α ∈ R is called computable if there exists a computable sequence (an)n∈ω

of rationals such that |α − an| < 2−n for all n ∈ ω. A real α ∈ R is left-c.e. if
there exists an increasing computable sequence of rationals converging to α. A real
α ∈ R is weakly computable if there exists a computable sequence (an)n of rationals
converging to α such that its variation∑n∈ω |an+1−an| is bounded. A real α is weakly
computable if and only if it is the difference between two left-c.e. reals. Thus, weakly
computable reals are also referred to as d.c.e. reals. A real α ∈ R is computably
approximable if there exists a computable sequence of rationals converging to α. The
sets of all computable, left-c.e., weakly computable, and computably approximable
reals are denoted by EC, LC, WC, and CA, respectively. With these definitions,
we have the following hierarchy:

EC ⊊ LC ⊊ WC ⊊ CA
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2.2. Martin-Löf randomness. An open set U ⊆ R is called c.e. if there exists
a computable sequence ((ai, bi))i of open intervals with rational endpoints whose
union is U . A Martin-Löf test (or ML-test) is a sequence (Un)n of uniformly c.e.
open sets in R such that µ(Un) ≤ 2−n for all n ∈ ω where µ denotes the Lebesgue
measure. A real α is said to be ML-random if α ̸∈ ⋂

n Un for every ML-test (Un)n.

2.3. Solovay reducibility. The original definition of Solovay reducibility is as fol-
lows.

Definition 2.1 (Solovay [13]). For α, β ∈ R, α is Solovay reducible to β, denoted
by α ≤S β, if there exists a partial computable function f :⊆ Q → Q and a constant
c ∈ ω such that f(q) ↓ for all q < β and α − f(q) < c(β − q) for all q ∈ dom(f).
Here, f(q) ↓ denotes that f(q) is defined.

Intuitively, Solovay reducibility captures the idea that from the perspective of
convergence rate, approximation of α can be slowed down by a constant multiple of
that of β.

Within left-c.e. reals, Solovay reducibility admits the algebraic characterization
as follows.

Theorem 2.2 (Downey, Hirschfeldt, and Nies [4]). Let α, β be left-c.e. reals. Then,
α ≤S β if and only if there exist a constant d ∈ ω and a left-c.e. real γ such that

dβ = α + γ.

The definition is modified by Zheng and Rettinger [15] as follows. They called it
S2a-reducibility, but we will refer to it as Solovay–Zheng–Rettinger reducibility or
simply Solovay–ZR reducibility.

Definition 2.3. For α, β ∈ CA, α is Solovay–ZR reducible to β, denoted by α ≤SZR

β, if there exist computable sequences (an)n∈ω, and (bn)n∈ω converging to α, β,
respectively, and a constant c ∈ ω such that

|α − an| < c(|β − bn| + 2−n) for all n ∈ ω.

We note that Solovay reducibility and Solovay–ZR reducibility coincide on left-c.e.
reals.

This relation is a preorder and naturally induces an equivalence relation. The
resulting equivalence classes are called Solovay–ZR degrees.

Basic properties of Solovay–ZR reducibility were established in Zheng and Ret-
tinger [15] and Rettinger and Zheng [12]. In particular, the least Solovay–ZR degree
consists of all computable reals. Within the class of weakly computable reals, the
maximal Solovay–ZR degree consists of all Martin-Löf random reals. Recall that a
real number α is called right-c.e. if its negative (−α) is left-c.e. Since every real that
is both weakly computable and Martin-Löf random is either left-c.e. or right-c.e.
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([12]), it follows that the top Solovay–ZR degree among weakly computable reals is
exactly the set of all left-c.e. or right-c.e. ML-random reals.

The Cauchy-style characterization of Solovay–ZR reducibility frequently turns out
to be useful.

Theorem 2.4 (Kumabe, Miyabe, and Suzuki [8]). Let α, β ∈ CA. The, α ≤SZR

β if and only if there exist computable sequences (an)n, (bn)n converging to α, β,
respectively, and q ∈ ω such that

(∀k, n ∈ ω)[k < n ⇒ |an − ak| < q(|bn − bk| + 2−k)].

One of the rather non-obvious results is that Solovay reducibility among left-c.e.
reals is dense. In fact, whenever α and β are left-c.e. reals with α <S β, there exists
a left-c.e. real γ such that

α <S γ <S β,

as shown by Downey, Hirschfeldt, and Nies [4].

3. Solovay–ZR reducibility and total variation

In this section, we discuss the relationship between Solovay–ZR reducibility and
total variation. This relationship served as the initial motivation for our research.

Miller [10, Definition 3.3] introduced variation randomness. A weakly computable
real α ∈ WC is called variation random if, for every computable approximation
(an)n of α whose variation is bounded, its variation∑

n

|an+1 − an|

is ML-random. Miller [10, Theorem 3.5] showed that there exists a weakly com-
putable real that is non ML-random but is variation random. Miller [10, Propo-
sition 3.4] also showed that being variation non-random is equivalent to being the
difference of two non-ML-random left-c.e. reals. We can reformulate this with the
terminology of Solovay–ZR reducibility as follows.

Proposition 3.1. Let α ∈ WC be a weakly computable real. Then the following
conditions are equivalent:

(i) α is variation random.
(ii) For every left-c.e. real β, if α ≤SZR β, then β is ML-random.

Proof. (ii)⇒(i). Let (an)n be a computable approximation of α with bounded vari-
ation γ. Then γ is clearly a left-c.e. real. Moreover, we have α ≤SZR γ since

|α − an| ≤
∞∑

k=n

|ak+1 − ak| = γ −
n−1∑
k=0

|ak+1 − ak|

for all n ∈ ω and the last summation is a computable approximation of γ. Thus, by
assumption (ii), γ is ML-random. Since the approximation (an)n is arbitrary, α is
variation ML-random.
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(i)⇒(ii). Suppose that condition (ii) fails. Then fix a left-c.e. real β such that
α ≤SZR β and β is not ML-random. By Theorem 2.4, there exist computable
sequences (an)n and (bn)n of rationals converging to α, β, respectively, and a constant
q ∈ ω such that

(∀k, n ∈ ω) [k < n ⇒ |an − ak| < q(|bn − bk| + 2−k)].

Suppose that bn < β holds for only finitely many n. Then β is right-c.e. Since
β is also left-c.e., it follows that β is computable. This in turn implies that α is
computable, because α ≤SZR β. Hence α is computable and condition (i) fails.
Therefore, we may assume that bn < β for infinitely many n.

Since β is left-c.e., the relation bn < β is semi-decidable. Therefore, by passing to
a subsequence if necessary, we may assume that (bn)n is increasing. Hence, we have

|an+1 − an| < q(bn+1 − bn + 2−n) for all n ∈ ω.

Let
cn = q(bn+1 − bn + 2−n) − |an+1 − an|.

By summing up, we have∑
n∈ω

|an+1 − an| +
∑
n∈ω

cn + qb0 − 2q = qβ.

Since (cn)n is a computable sequence of positive rationals, its sum is left-c.e. Hence,
by Theorem 2.2, the variation ∑

n |an+1 − an| is Solovay reducible to β. Since β is
not ML-random, neither is the variation ∑

n |an+1 − an|. Hence, α is not variation
random. □

The proposition above states that a weakly computable real is variation random
if and only if there is no non-ML-random left-c.e. Solovay–ZR degree strictly above
it. Equivalently, among weakly computable reals, being both non-ML-random and
variation random is precisely the same as having a Solovay–ZR degree that is quasi-
maximal with respect to the left-c.e. reals–that is, above it there is no left-c.e. degree
other than an ML-random one.

4. Quasi-minimal Solovay Degrees

In this section, we show the existence of quasi-minimal Solovay degrees.

Definition 4.1. A real β ∈ CA is quasi-minimal relative to left-c.e. reals in the
Solovay–ZR degrees, or quasi-minimal for short, if

• β is not computable, and
• for every left-c.e. real α, α ≤SZR β implies that α is computable.

Quasi-minimality is the dual notion of variation randomness among weakly com-
putable reals. Recall that no left-c.e. real is quasi-minimal, since the partial order
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of the Solovay degrees of left-c.e. reals is dense ([5, Theorem 9.5.3, Corollary 9.5.5]).
The main claim of this section is the existence of such a non-computable real.

Theorem 4.2. There exists a weakly computable real β that is quasi-minimal.

We provide a proof of this theorem below.

4.1. Requirements. We assume β ∈ (0, 1). To ensure that β is not computable,
we consider a computable list containing all computable reals in [0, 1], as follows.
The e-th partially computable sequence of rationals in [0, 1] is denoted by (xe

s)s and
we assume that

|xe
s+1 − xe

s| ≤ 2−s−1 if both defined.
We set the requirement Re by

Re : β ̸= lim
s

xe
s.

Then, satisfying all requirements Re implies that β is not computable.
We also need to enforce the other condition of quasi-minimality, namely, if α ≤SZR

β, then α is either computable or not left-c.e. We assume α ∈ [0, 1]. We computably
enumerate all triples of two partially computable sequences of rationals in [0, 1] and
a positive integer, each of which may serve as a potential witness for α ≤SZR β.
That is, we enumerate all candidate approximations of α and β that may realize the
relation α ≤SZR β. The sequences may be undefined from some point or may not
be convergent.

To enforce that α is not left-c.e., we computably enumerate all nondecreasing
sequences of rationals in [0, 1] such that every left-c.e. real in [0, 1] arises as the limit
of some sequence in the enumeration. In fact, given a computable list of partial
computable functions Φe : ω → Q ∩ [0, 1], every left-c.e. real can be written as

sup
s,n∈ω

Φe,s(n),

where undefined values are interpreted as 0. Moreover, the approximations

ye
s = max

t,n≤s
Φe,t(n)

yield the desired nondecreasing sequence.
We consider tuples of such sequences and integers, with e-th element denoted by

(ae
s)s, (be

s)s, qe, (ye
s)s. Note that ye

s is defined for all e, s ∈ ω. We set the requirement
Qe by

Qe :(ae
s)s ∈ CS(α), (be

s)s ∈ CS(β), (∀s)[|α − ae
s| < qe|β − be

s| + 2−s]

⇒ α is computable or α ̸= lim
s

ye
s.

Here, CS(α) is the set of all computable sequences of rationals converging to α.
Then, satisfying all requirements Qe ensures the second condition of quasi-minimality
of β.
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4.2. Local strategy. First, we present a strategy to satisfy Qe for a fixed e ∈ ω.
We search for two approximations ae

s0 and ae
s1 that are sufficiently far apart. If they

cannot be found and ae
s is defined for all s ∈ ω, then α should be computable. If

found, then, by choosing β appropriately, one can make α close to whichever of ae
s0

or ae
s1 one prefers. Finally, by choosing β in accordance with the monotonically

increasing values of ye
s, we can ensure that α does not coincide with its limit. We

choose β so that α lies in the right-hand interval while ye
s is small, and in the

left-hand interval once ye
s becomes large.

Ks0 Ks1 α

β

lim
s

ye
s

ye
s ye

s

be
s0 be

s1

Figure 1. Local strategy

We now describe the construction in more concrete terms. Let Ke
s be the closed

interval given by
Ke

s = [ae
s − 2−s+1, ae

s + 2−s+1].

Search for s0, s1 ∈ ω such that Ke
s0 and Ke

s1 are disjoint. If Ke
s is undefined for

some s ∈ ω, then the requirement Qe is satisfied. If Ke
s is defined for all s ∈ ω, and

if no disjoint pair of intervals can be found (that is, every two intervals intersect),
then (ae

s)s is a Cauchy sequence and its limit is computable, which implies that the
requirement Qe is satisfied. Thus, we assume that such a pair s0 and s1 is found.

We further assume that Ke
s0 lies entirely to the left of Ke

s1 . More precisely, for
any y0 ∈ Ke

s0 and y1 ∈ Ke
s1 , we have y0 < y1. First, we enforce that β is sufficiently

close to be
s1 so that α should be in Ke

s1 . Note that ye
s is increasing in s. If ye

s gets
close to Ke

s1 , then we enforce that β is sufficiently close to be
s0 so that α lies in Ke

s0 .
In any case, α is not the limit of ye

s, and the requirement Qe is satisfied.

4.3. Combined strategy. We set the priorities of the requirements as follows:

Q0 > R0 > Q1 > R1 > · · · .

Each requirement is associated with a closed forcing interval: Ie for Qe and Je

for Re. Each interval associated with a requirement with lower priority should be
included in each interval associated with a requirement with higher priority, that is,

I0 ⊇ J0 ⊇ I1 ⊇ J1 · · · .
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Initially (i.e., at stage s = 0), all intervals are set to [0, 1]. For convenience, let
J−1 = [0, 1].

We describe a strategy to satisfy Qe. Let s ∈ ω be the current stage. Search for
s0, s1 ∈ ω such that

(i) ae
s0 , be

s0 , ae
s1 , and be

s1 are defined,
(ii) be

s0 and be
s1 are interior points of Je−1,

(iii) ae
s0 < ae

s1 , and
(iv) Ke

s0 and Ke
s1 are disjoint.

Until such a pair is found, set Ie = Je−1. As long as Je−1 remains unchanged,
we use a fixed pair (s0, s1). We choose the pair with the smallest possible larger
index max{s0, s1}, and among such pairs, the one with the smallest smaller index
min{s0, s1}. Let ze = (ae

s0 + 2−s0+1 + ae
s1 − 2−s1+1)/2, which is the midpoint between

the right endpoint of Ks0 and the left endpoint of Ks1 . Since Ks0 and Ks1 are
disjoint, we have ze ̸∈ Ks0 ∪ Ks1 . Recall that s is the current stage. While ye

s < ze,
we set

Ie = [be
s1 − 2−s1q−1

e , be
s1 + 2−s1q−1

e ] ∩ Je−1.

If ye
s ≥ ze, then set

Ie = [be
s0 − 2−s0q−1

e , be
s0 + 2−s0q−1

e ] ∩ Je−1.

We describe a strategy to satisfy Re. Search s2 ∈ ω such that
(i) xe

s2 is defined, and
(ii) 2−s2+1 is smaller than r times the length of Ie,

where r > 0 is a positive rational; in fact r < 1/6 is sufficient as we will see later.
Until such an s2 is found, we define Je to satisfy only conditions (i) and (iii) below.
As long as Ie remains unchanged, we use a fixed integer s2. Let Je be a closed
interval such that

(i) Je ⊆ (Ie)◦,
(ii) Je and [xe

s2 − 2−s2 , xe
s2 + 2−s2 ] are disjoint, and

(iii) the length of Je is less than r times the length of Ie,
where I◦ is the set of all inner points of I.

Finally, define β as the unique real in the intersection ⋂ Ie ∩ ⋂ Je.

4.4. Verification. We will establish several claims on the construction.

Claim. Each requirement is injured only finitely many times.

As long as the requirement with higher priority remain unchanged, the forcing
intervals change only finitely many times. Thus, the claim follows by induction.

Claim. The real β is well-defined.
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The forcing intervals are closed and nested. Their lengths decrease to 0 because
of the condition (iii) in the definition of Je. Hence, the intersection consists of a
single real.

Claim. Each requirement Re is satisfied.

By condition (ii) in the definition of Je, we have

|β − xe
s2 | > 2−s2 .

By the fast convergence of (xe
s)s, if xe = lims xe

s exists, then we have

|xe − xe
s2| ≤ 2−s2 .

Thus, the requirement Re is satisfied.

Claim. Each requirement Qe is satisfied.

Fix e. Suppose that (ae
s)s ∈ CS(α), (be

s)s ∈ CS(β), and |α − ae
s| < qe|β − be

s| + 2−s

for all s ∈ ω. After fixing Je−1, we have β ∈ Je ⊆ (Ie)o and Ie ⊆ Je−1, thus
β is an interior point of Je−1. Therefore, we have be

s ∈ (Je−1)o for all sufficiently
large s. Hence, conditions (i) and (ii) in the strategy for Qe are satisfied for all
sufficiently large s. Thus, if no such pair (s0, s1) is found, then for all sufficeintly
large s condition (iv) fails. In other words, every two intervals Ke

s intersect, and α

must be computable in the same way as the local strategy in Section 4.2. In the
following, we look at the case when such a pair exists.

If ye
s < ze for all s, then β ∈ Ie, and |β − be

s1 | ≤ 2−s1q−1
e by the definition of Ie,

and thus
|α − ae

s1 | < qe|β − be
s1| + 2−s1 ≤ 2−s1+1,

which implies that α ̸= lims ye
s, because

lim
s

ye
s ≤ ze < ae

s1 − 2−s1+1 < α.

If ye
s > ze for some s, then ye

s > ze for all but finitely many s since (ye
s)s is

non-decreasing. Thus,

|α − ae
s0 | < qe|β − be

s0| + 2−s1 ≤ 2−s0+1,

which implies that
α < ae

s0 + 2−s0+1 < ze ≤ lim
s

ye
s.

Thus, the requirement Qe is satisfied.

Claim. The real β is weakly computable.

We analyze the number of injuries associated with Qe and Re after fixing require-
ments with higher priority. The requirement Qe has the following stages:

(i) Qe is in the stage of searching for s0, s1.
(ii) Ie is defined near be

s1 .
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(iii) Ie is defined near be
s0 .

Thus, the number of changes mainly associated with Qe is 3.
The requirement Re has the following stages:

(i) Re is in the stage of searching for s2.
(ii) Je is defined near xe

s2 .
Thus, the number of changes associated mainly with Re is 2. The total number of
changes is:

Q0 : 3, R0 : 3 × 2 = 6, Q1 : 6 × 3, R1 : 62.

For all e ∈ ω, the total number of changes of Qe and Re is bounded by 6e+1.
We claim that, by choosing r sufficiently small, β becomes weakly computable.

When Ie or Je is redefined, all intervals associated with requirements with lower
priorities are reset. As an approximation of β, we use the midpoint of Ie or Je,
whichever is the narrowest among the defined intervals. The length of the interval
Ie is bounded by re. When the interval Je is modified by requirement Re, both
the old and new midpoints lie within Ie, so the resulting approximation error is also
bounded by re. Similarly, the length of the interval Je−1 is bounded by re, and when
Ie is altered by requirement Qe, the approximation difference remains bounded by
re. Thus, the total sum of the approximation differences is bounded by

2
∞∑

e=0
6e+1 · re,

which is finite provided r is sufficiently small.

5. Lower density of Solovay–ZR degrees

We establish the lower density of Solovay–ZR degrees within the class of com-
putably approximable reals. The proof by Downey, Hirschfeldt, and Nies [4] estab-
lishing the lower density of Solovay degrees for left-c.e. reals relies critically on the
monotonicity of their approximations, and therefore cannot be directly adapted to
our setting.

Interestingly, our argument splits into cases depending on whether the sequence is
Schnorr random or not. Intuitively, if a real is random, then by applying a suitable
Bernoulli measure transformation one can make it slightly less random in the sense
of Solovay reducibility. In this process, the result on the longest run ensures a close
correspondence between (i) the distance between two reals and (ii) the length of the
common prefix of their binary expansions, so that one can pass from one description
to the other without large discrepancies.

On the other hand, if a real is not random, then one can construct a function
with a steep slope at that point, which allows us to produce a new real that is
even less random. To ensure the computability of the transformation, we rely on
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Schnorr randomness, which imposes stricter computability constraints than Martin-
Löf randomness.

5.1. Schnorr randomness and the longest run of heads. We quickly review
Schnorr randomness. We identify a real in [0, 1] with its infinite binary expansion,
and call such a real Schnorr random with respect to the Lebesgue measure if its
binary expansion is Schnorr random with respect to the uniform measure. The
Cantor space 2ω is the set of all infinite binary sequences, equipped with the topology
generated by the cylinder sets [σ] = {X ∈ 2ω : σ ≺ X}, where ≺ denotes the prefix
relation. A c.e. open set on 2ω is the union of a computable sequence of cylinder
sets. Let µ be the uniform measure on 2ω. A Schnorr test is a sequence (Un)n∈ω of
uniformly c.e. open sets such that µ(Un) ≤ 2−n for all n ∈ ω, with the additional
requirement that µ(Un) is uniformly computable. A sequence X is called Schnorr
random if X ̸∈ ⋂

n Un for any Schnorr test (Un)n.
A useful fact on Schnorr randomness is a Solovay-test-type characterization by

Downey and Griffiths [3, Definition 2.3, Theorem 2.4]. A total Solovay test is a com-
putable collection of c.e. open sets {Vi}i∈ω such that the sum ∑∞

i=0 µ(Vi) converges
to a computable real. A sequence X ∈ 2ω passes a total Solovay test if X ∈ Vi for
at most finitely many Vi. Then, X ∈ 2ω is Schnorr random if and only if X passes
all total Solovay tests.

In the proof below, we consider the longest run of heads in fair coin tosses. The
relevance of the longest run result lies in its ability to connect probabilistic behavior
of random sequences with metric properties of real numbers, a connection we exploit
in the density argument.

A survey of unpublished work on this topic can be found in [1] though we re-
quire only a much weaker bound. Accordingly, we invoke Durrett’s example in [6,
Example 2.3.12], which supplies a proof of the required bound. The following is a
straightforward reformulation of this result in the terminology of algorithmic ran-
domness. A related result for a string with high Kolmogorov complexity can be
found in [9].

Theorem 5.1. For X ∈ 2ω, define ℓn(X) = max{m : Xn−m+1 = · · · = Xn = 1},
where Xn denotes the n-th bit of X ∈ 2ω. Let Ln(X) = max1≤m≤n ℓm. Then Ln(X)
is referred to as the longest run up to time n. If X is Schnorr random with respect
to the uniform measure µ, then

Ln(X)
log2 n

→ 1, (n → ∞).

Proof. Let ε > 0 be a rational number. For all n ≥ 1, let

Un = {X ∈ 2ω : ℓn(X) ≥ (1 + ε) log2 n}.
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Then, we have µ(Un) ≤ n−(1+ε) and µ(Un) is computable uniformly in n. Further-
more, we have

∞∑
n=N+1

µ(Un) ≤
∞∑

n=N+1
n−(1+ε) ≤

∫ ∞

N
x−(1+ε) dx = N−ε

ε
,

which converges to 0 as N → ∞. Hence, (Un)n is a total Solovay test. Since X is
Schnorr random, X ∈ Un for at most finitely many Un. Since ε is arbitrary, we have

lim sup
n

Ln(X)
log2 n

≤ 1.

For the other direction, suppose that ε is small enough. We break the first n bits
into disjoint blocks of length [(1 − ε) log2 n] + 1. For sufficiently large n, there are
at least n

log2 n
such blocks. For n ≥ 1, let

Vn = {X ∈ 2ω : Ln(X) ≤ (1 − ε) log2 n}.

Clearly, µ(Vn) is computable uniformly in n. For each X ∈ Vn, in each block, not
all bits are equal to 1. Thus,

µ(Vn) ≤ (1 − 2−[(1−ε) log2 n]−1)n/ log2 n ≤ exp(−nε/2 log2 n) ≤ n−2,

where the details can be found in [6, Example 2.3.12]. Therefore, we have
∞∑

n=N+1
µ(Vn) ≤

∞∑
n=N+1

n−2 ≤
∫ ∞

N
x−2 dx = N−1.

Hence, (Vn)n is a total Solovay test. Since X is Schnorr random and ε is arbitrary,
we obtain

lim inf
n

Ln(X)
log2 n

≥ 1.

□

This leads to a result concerning the relationship between the distance of two real
numbers and the number of initial matching digits in their binary expansions.

Lemma 5.2. Let X, Y ∈ 2ω and x, y be the corresponding reals in [0, 1], that is,
x = ∑∞

k=0 X(k)2−k−1, y = ∑∞
k=0 Y (k)2−k−1. Suppose x < y. Let n = max{k ∈ ω :

X ↾ k = Y ↾ k} and d = − log2(y − x), where X ↾ k denotes the initial segment of
X with length k. Then,

X(n) = 0, and X(k) = 1 for all k such that n < k < [d],

Y (n) = 1, and Y (k) = 0 for all k such that n < k < [d].

Proof. Let Z ∈ 2ω be defined by

Z ↾ n = Y ↾ n, Z(n) = 1, and Z(k) = 0 for all k > n,

and z ∈ [0, 1] be the corresponding real. Since X(n) ̸= Y (n) and x < y, it follows
that X(n) = 0 and Y (n) = 1. Thus, x ≤ z ≤ y.
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Y *******1000000????????

Z *******100000000000000

X *******0111111????????

n digits  Y(n) Y([d])

Z′￼ *******011111111111111

≤ 2−[d]

≤ 2−[d]

Figure 2. Runs of consecutive 0s and 1s

Since y − z ≤ y − x = 2−d ≤ 2−[d], we have

Y (k) = Z(k)

for all k such that k < [d]; otherwise the contribution of that differing bit would
exceed 2−[d].

Let Z ′ ∈ 2ω be such that

Z ′ ↾ n = X ↾ n, Z ′(n) = 0, and Z ′(k) = 1 for all k ≥ n.

Then, the corresponding real of Z ′ is also z. Since z − x ≤ y − x ≤ 2−[d], we also
have

X(k) = Z ′(k) for all k < [d].
□

5.2. The case of Schnorr random reals. To establish the lower density of Solovay–
ZR degrees among computably approximable reals, as a first step, we consider the
case where β is Schnorr random.

In the proof below, we employ the following notion from [7].

Definition 5.3. Let α, β ∈ CA. The real α is strongly Solovay reducible to β,
denoted by α ≪S β, if there exist computable sequences (an)n and (bn)n of rationals
converging to α and β, respectively, such that

lim
n→∞

|α − an|
|β − bn| + 2−n

= 0. (1)

Strong Solovay reducibility is a stronger version of Solovay–ZR reducibility; The
convergence rate of α should be faster than that of β. It may be more precise to refer
to this notion as strong Solovay–ZR reducibility. It is evident that strong Solovay
reducibility implies Solovay–ZR reducibility. Moreover, for any computably approx-
imable real number α, the condition α ≪S α holds if and only if α is computable,
as shown in [7, Proposition 3.10].
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Theorem 5.4. Let β ∈ CA be a Schnorr random real. Then there exists α ∈ CA
such that ∅ <SZR α <SZR β. If β ∈ WC, then such an α can be chosen to lie in
WC as well.

Proof. Let p ∈
(

1
2 , 1

)
be a computable real number. Let Bp denote the Bernoulli

measure on 2ω with parameter p (that is, the measure under which each bit takes
the value 1 independently with probability p). We identify 2ω with the unit interval
[0, 1] via the usual binary expansion. Define a function f : [0, 1] → [0, 1] by

f(x) = Bp

(
{z ∈ [0, 1] : z ≤ x}

)
,

where the relation ≤ is the standard order on the real numbers. Then the following
properties hold:

(i) The function f is computable (in the sense of computable analysis; see, e.g.,
[14, 2]).

(ii) The function f is strictly monotone increasing.
We then define α = f(β). Since α ≡T β, it follows that α is not computable.
It remains to show that α is strongly Solovay reducible to β. First, note that

α ≪S β implies α ≤SZR β. If β ≤SZR α, then α ≪S β ≤SZR α, which would imply
α ≪S α, a contradiction.

Fix (bn)n ∈ CS(β) and let an = f(bn) for all n. Although an may not be rational, it
suffices to verify condition (1) for this sequence (an)n, since rational approximations
can be obtained by a small adjustment.

Fix n ∈ ω. Let γ ∈ 2ω be a binary expansion of the rational number bn. Since β

is Schnorr random and bn is rational, we have β ̸= bn. Define

m = max{k ∈ ω : β ↾ k = γ ↾ k}, d = − log2 |β − bn|.

We assume that β − bn is sufficiently small and that [d] ≥ 2 for all n ∈ ω. By
Lemma 5.2, the difference d − m is bounded by the length of the longest run of 0s
or 1s up to time n. Since β is Schnorr random, it follows from Theorem 5.1 that
there exists a constant c ∈ ω such that

d − m ≤ c log2[d] for all n ∈ ω. (2)

Note that the constant c ∈ ω depends on β, but not on n ∈ ω. Also note that both
d and m depend on n ∈ ω.

Let I be the closed interval between bn and β. To verify condition (1), it suffices
to show that

Bp(I)
2−d

→ 0 (3)

as n → ∞ because
|β − bn| = 2−d, |α − an| = Bp(I).
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As n → ∞, we have m → ∞ and d → ∞. Thus, condition (3) is equivalent to

log2 Bp(I) + d → −∞,

which is implied by

lim sup
n→∞

(
log2 Bp(I)

d
+ 1

)
< 0.

Now, we evaluate this value. Since I ⊆ [β ↾ m], we have

Bp(I) ≤ Bp([β ↾ m]) = pℓ1qℓ0

where ℓ1 and ℓ0 denote the number of 1s and 0s, respectively, in β ↾ m, and q = 1−p.
By taking the base-2 logarithm and dividing by d, we have

log2 Bp(I)
d

≤ ℓ1

d
log2 p + ℓ0

d
log2 q.

Hence, it suffices to show that the lim sup of the following expression is strictly less
than 0:

1 + ℓ1

d
log2 p + ℓ0

d
log2 q (4)

Now we use the randomness. By the effective law of large numbers for Schnorr
randomness, together with the bound (2), we obtain

d − m

d
→ 0,

ℓ1

d
= ℓ1

m

(
1 − d − m

d

)
→ 1

2 ,
ℓ0

d
→ 1

2 .

A straightforward calculation shows that for 0 < x < 1,

− ln x − ln(1 − x) ≥ 2 ln 2,

with equality at x = 1
2 , which implies

1 + 1
2 log2 p + 1

2 log2 q < 0.

Hence, the limsup of (4) is less than 0.

Now, since we have α ≤SZR β, by means of Theorem 2.4, it holds that β ∈
WC =⇒ α ∈ WC. □

5.3. The case of non-Schnorr-random reals. We next consider the case where β

is not Schnorr random, which completes the proof of the lower density of Solovay–ZR
degrees among computably approximable reals.

In the proof below, we use Schnorr integral tests from [11]. Let R = R ∪ {±∞}
and µ be the Lebesgue measure on [0, 1]. A Schnorr integral test is a lower semi-
computable function f : [0, 1] → R such that the integral

∫
f dµ is finite and a

computable real. A real x ∈ [0, 1] is Schnorr random if and only if f(x) < ∞ for
every Schnorr integral test f .

Theorem 5.5. Let β ∈ CA be a noncomputable real that is not Schnorr random.
Then there exists α ∈ CA such that ∅ <SZR α <SZR β. If β ∈ WC, then such an
α can be chosen to lie in WC as well.
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Proof. Suppose that β is noncomputable and not Schnorr random. Then there exists
a lower semicomputable function f : [0, 1] → R such that I =

∫
f dµ is a computable

real and f(β) = ∞. We further assume that f ≥ 1
2 and I = 1.

Let g = 1
f
. Then, g is an upper semicomputable function g : [0, 1] → [0, 2]

such that the integral is a positive computable real. Thus, there exists a positive
computable real c such that the integral of ĝ = c · g equals 1. Notice that ĝ(x) = 0
if and only if f(x) = ∞. In particular, we have ĝ(β) = 0.

Let h(x) =
∫ x

0 ĝ(t) dµ. Then h is a computable function from [0, 1] to [0, 1], and
is Lipschitz continuous.

We define α to be h(β). Then we clearly have α ≤SZR β; see [8] for the connection
between Solovay–ZR reducibility and Lipschitz continuity. Since h is strictly increas-
ing and computable, the inverse h−1 is also computable (see [14, Theorem 6.3.11]),
and thus α ≡T β. In particular, α is not computable.

Finally, we claim that α ≪S β, which implies that β ̸≤S α. Let (bn)n ∈ CS(β).
Since f is lower semicomputable and f(β) = ∞, we may further assume that f(bn) >

n. Define an to be a rational number such that |an − h(bn)| < 2−2n. We may further
assume that (an)n is computable, so that (an)n ∈ CS(α). It now suffices to show
that

|α − an|
|β − bn| + 2−n

→ 0 as n → ∞.

Let M > 0 be an arbitrarily large integer. Then there exists an open interval I

containing β such that f(x) > M/c for all x ∈ I. Since g(x) < c/M and ĝ(x) < M−1

for all x ∈ I, the function h restricted to I is Lipschitz continuous with Lipschitz
constant M−1. Since bn → β as n → ∞, there exists N ∈ ω such that f(x) > M/c

for all reals x between β and bn, for all n ≥ N . Then,

|α − an| ≤ |h(β) − h(bn)| + 2−2n ≤ M−1|β − bn| + 2−2n,

which implies the desired claim.

If β ∈ WC, then we obtain α ∈ WC because α ≤SZR β. □
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