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Abstract. We consider the problem of predicting the next bit in an infinite

binary sequence sampled from the Cantor space with an unknown computable

measure. We propose a new theoretical framework to investigate the properties of

good computable predictions, focusing on such predictions’ convergence rate.

Since no computable prediction can be the best, we first define a better pre-

diction as one that dominates the other measure. We then prove that this is

equivalent to the condition that the sum of the KL divergence errors of its predic-

tions is smaller than that of the other prediction for more computable measures.

We call that such a computable prediction is more general than the other.

We further show that the sum of any sufficiently general prediction errors is

a finite left-c.e. Martin-Löf random real. This means the errors converge to zero

more slowly than any computable function.
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1. Introduction

Machine learning has recently become one of the hottest topics, with many real-

world applications transforming society. Since the Dartmouth Conference in 1956,

there have been efforts to develop a deeper theoretical understanding of learning.

Several frameworks, such as PAC learning and Gold-style limit learning, have been

proposed to define learning, explain it, and explore its capabilities and limits.

This paper explores the theoretical limits of learning based on Solomonoff’s uni-

versal induction or algorithmic probability theory.

We consider the following problem. We predict the next bit in an infinite binary

sequence. We know the infinite binary sequence is sampled from the Cantor space

with an unknown computable probability measure.

In the standard setting of the theory of universal induction, the measure used

for prediction is c.e., that is, it is computably approximable from below but not

computable in general. The reason for considering this broader class of measures

than that of computable measures is that there exists an optimal prediction for c.e.,

while no computable prediction is optimal. The theory of universal induction con-

cerns the properties of optimal predictions. This theory is elegant from a theoretical

standpoint and has succeeded in deepening our understanding of learning. However,

optimal predictions cannot be implemented directly in a computer, and its claims

about machine learning algorithms used in practice are quite limited.

Even though there is no optimal computable prediction, can we prove any suffi-

ciently good one that approximates the optimal one has specific properties? This

paper gives a positive answer to this question by introducing the concept of gener-

ality.

We call a measure more general than another measure if it dominates the other.

We then prove the prediction induced from a more general measure performs well

for sample points of more computable measures. In other words, a more general

prediction can solve more tasks. More precisely, the prediction induced from a more

general measure has smaller error sums when measured by KL divergence (Theorem

3.2).

Furthermore, if we fix a computable measure to take samples, the error sum of

sufficiently general predictions is always a finite Martin-Löf random real (Theorem

4.1). This means the errors converge to zero more slowly than any monotone com-

putable function. A sufficiently general prediction cannot converge quickly, and its

convergence rate is uniquely determined up to a multiplicative constant (Theorem
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4.2). While simple intuition suggests that good predictions should have small er-

rors, general-purpose algorithms that can solve many tasks will converge slower than

specialized algorithms.

As special cases, we analyse the convergence speed using the Lp-norm when the

model measure µ is either a Dirac measure (Proposition 4.9) or a separated measure

(Proposition 4.16).

This paper is a sequel to [17]. While the notion of generality has already been

defined in [17], we consider this notion more carefully in this paper. In particular,

we give a necessary and sufficient condition of domination in Theorem 3.2. Theorem

4.1 strengthens [17, Theorem 3.1] and Proposition 4.13 strengthens [17, Theorem

4.3, 4.4].

2. Preliminaries

In this section, we fix the notation and review notions from some theories.

2.1. Notations. The sets of all positive integers, rational numbers, and reals are

denoted by N = {1, 2, 3, · · · }, Q, and R, respectively.
The set of all finite binary strings is denoted by {0, 1}∗. We denote finite binary

strings using σ and τ . The length of a string σ is denoted by |σ|. For σ, τ ∈ {0, 1}∗,
the concatenation of σ and τ is denoted by στ .

The set of all infinite binary sequences is denoted by {0, 1}N. We use X, Y, Z

to denote infinite binary sequences. We write X = X1X2X3 · · · and let X<n =

X1X2 · · ·Xn−1 and X≤n = X1X2 · · ·Xn for n ∈ N.
The Cantor space, also denoted by {0, 1}N, is the space of all infinite binary

sequences equipped with the topology generated from the cylinder sets [σ] = {X ∈
{0, 1}N : σ ≺ X} for σ ∈ {0, 1}∗ where ≺ is the prefix relation.

2.2. Computability theory. We follow the standard notation and terminology

in computability theory and computable analysis. For details, see, for instance,

[23, 28, 6].

A partial function f :⊆ {0, 1}∗ → {0, 1}∗ is a partial computable function if it can

be computed using a Turing machine. A real x ∈ R is called computable if there

exists a computable sequence (qn)n∈N of rationals such that |x − qn| < 2−n for all

n. A real x ∈ R is called left-c.e. if there exists an increasing computable sequence

(qn)n converging to x. A real x ∈ R is called right-c.e. if −x is left-c.e.

A function f : {0, 1}∗ → R is called computable if f(σ) is uniformly computable

in σ ∈ {0, 1}∗. A (probabilistic) measure µ on {0, 1}N is computable if the function

σ 7→ µ([σ]) =: µ(σ) is computable. For details on computable measure theory, see,

for instance, [27, 3, 29].
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2.3. Theory of inductive inference. Now, we review the theory of inductive

inference initiated by Solomonoff. The primary references for this are [13, 15]. For

a more philosophical discussion, see [20].

We use µ to denote a computable measure on the Cantor space {0, 1}N. This µ

represents an unknown model. We call this measure µ a model measure.

Suppose an infinite binary sequence is sampled from the Cantor space with this

µ. When given the first n − 1 bits X<n of X, the next bit follows the conditional

model measure on {0, 1} represented by

k 7→ µ(k|X<n) =
µ(X<nk)

µ(X<n)
. (1)

Our ultimate goal is to construct a computable measure ξ such that the prediction

ξ(·|X<n) is close to µ(·|X<n). We call this measure ξ a prediction measure and call

the measure ξ(·|·) a conditional prediction.

Solomonoff’s celebrated result states that every optimal prediction behaves rather

well. A semi-measure is a function ξ : {0, 1}∗ → [0, 1] such that ξ(ϵ) ≤ 1 and

ξ(σ) ≥ ξ(σ0) + ξ(σ1) for every σ ∈ {0, 1}∗ where ϵ is the empty string. A function

f : {0, 1}∗ → R is called c.e. or lower semi-computable if f(σ) is left-c.e. uniformly

in σ ∈ {0, 1}∗.
Let µ, ξ be semi-measures on {0, 1}N. We say that ξ (multiplicatively) dominates µ

if, there exists c ∈ N such that µ(σ) ≤ c·ξ(σ) for all σ ∈ {0, 1}∗. A c.e. semi-measure

ξ is called optimal if ξ dominates every c.e. semi-measure. An optimal c.e. semi-

measure exists while no computable measure is optimal. The conditional prediction

ξ(·|·) induced by this optimal c.e. semi-measure is sometimes called algorithmic

probability.

Theorem 2.1 ([24], see also [13, Theorem 3.19] ). Let µ be a computable measure

on {0, 1}N. Let ξ be an optimal c.e. semi-measure. Then, for both k ∈ {0, 1} we

have

ξ(k|X<n)− µ(k|X<n) → 0

as n → ∞ almost surely when X follows µ.

The prediction semi-measure ξ is arbitrary and lacks information about the model

measures µ. The prediction by ξ investigates X<n, which contains some information

of µ, and predicts the next bit X(n). The theorem above states that the condi-

tional predictions ξ(·|X<n) are getting close to the true conditional model measures

µ(·|X<n) almost surely.

The rate of the convergence has been briefly discussed in [14] but has yet to be

established.
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3. Generality

In this section, we introduce the concept of generality. Generality is a tool for

comparing the well-behavedness of two measures. Just as optimality is defined by

domination, generality is defined by domination. We expect that when one measure

dominates another measure, the induced prediction also behaves better than the

other. The question here is: what does it mean for one prediction to behave better

than another? We answer this question by considering the sum of the prediction

errors.

3.1. Definition of generality. Let ν, ξ be two measures on {0, 1}N. We say that

ξ is more general than ν if ξ dominates ν; that is, there exists c ∈ N such that

ν(σ) ≤ c · ξ(σ) for all σ ∈ {0, 1}∗.
The intuition is as follows. We are sequentially given a sequence X ∈ {0, 1}N.

The sequence X ∈ {0, 1}N may be a binary expansion of e or π, or a random

sequence of P (Xn = 0) = P (Xn = 1) = 1
2
independently. The task is to find such

regularity and make a good prediction. The regularity is expressed as (or identified

with) the measure µ such that X is random with respect to µ. The measure is a

Dirac computable measure in the deterministic case, such as e or π. In general, the

measure need not be deterministic; it can be an arbitrary computable measure.

Essentially, a prediction ξ is more general than another prediction ν if the pre-

diction ξ behaves well for µ such that ν behaves well for µ. Thus, ξ performs better

for a larger class of µ than ν. As we will see in Theorem 3.2, this relation is for-

malized by domination. This is the reason for using the terminology ‘general’ for

domination.

We are interested in the property of sufficiently general computable predictions.

We often say that a property P holds for all sufficiently large natural numbers if

there exists N such that P (n) holds for all natural numbers n ≥ N . As an analogy,

we say that a property P holds for all sufficiently general computable prediction

measures if there exists a computable prediction measure ν such that the property

P (ξ) holds for all computable prediction measure ξ dominating ν. The author

came up with the idea inspired by the study of Solovay functions, such as [2]. In

particular, the computational complexity of computing such functions may be very

low [12, Theorem 2].

In the inductive inference theory, we discuss the properties of an optimal c.e.

semi-measure and its induced prediction. Similarly, we will see some properties of a

sufficiently general computable measure and its induced prediction.

3.2. Domination and convergence. We claim that domination means better be-

havior by giving a necessary and sufficient condition for the convergence of the sum

of the prediction errors. Here, the error is measured by Kullback-Leibler divergence.
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The Kullback-Liebler divergence is the primary tool for discussing the convergence

of the predictions. For details, see any standard text on information theory, such as

[7].

Let µ, ξ be measures on the discrete space {0, 1}. The KL divergence of µ with

respect to ξ is defined by

d(µ||ξ) =
∑

k∈{0,1}

µ(k) ln
µ(k)

ξ(k)

where 0 · log 0
z
= 0 for z ≥ 0, y log y

0
= ∞ for y > 0, and ln is the natural logarithm.

Next, let µ, ξ be measures on the continuous space {0, 1}N. We use the notation

• dσ(µ||ξ) = d(µ(·|σ)||ξ(·|σ)),
• Dn(µ||ξ) =

∑n
k=1Eµ[dX<k

(µ||ξ)],
• D∞(µ||ξ) = limn→∞ Dn(µ||ξ),

where µ(·|σ), ξ(·|σ) are the measures on {0, 1} defined in (1). Thus, dσ(µ||ξ) is the
prediction error conditioning on σ, Dn(µ||ξ) is the expected sum of the prediction

errors until the nth round whenX follows µ, andD∞ is its limit. Since KL divergence

is non-negative, Dn is non-decreasing in n. Note that the finiteness of the sum of

the prediction errors is a condition stronger than the convergence of the errors to 0.

Remark 3.1. The chain rule for KL divergence states that

Dn(µ||ξ) = Eµ[ln
µ(X≤n)

ξ(X≤n)
]

See such as [13, (3.18)] and [7, Theorem 2.5.3].

Theorem 3.2. For two measures ξ, ν on {0, 1}N, the following are equivalent.

(i) ξ dominates ν.

(ii) There exists a constant c ∈ N such that for every measure µ on {0, 1}N, we
have D∞(µ||ξ) ≤ D∞(µ||ν) + c.

From this, domination means rapid convergence of a larger class of model mea-

sures. If ξ dominates ν and ν behaves well for µ (the error sum is finite), then ξ

also behaves well for µ (the error sum is finite). Furthermore, the difference of the

sums of the errors is, at most, a constant uniformly in µ. Thus, the error sum of ν

is small, so is that of ξ.

Note that KL divergence can be infinity, and the finiteness of KL divergence is

an essential aspect in the formulation of Theorem 3.2. Some other distances are

discussed in [13, Section 3.2.5]. One example is the Hellinger distance, which plays

a vital role in the proof of Theorem 2.1, but is bounded by 1. Thus, KL divergence

seems helpful in the formulation.

Proof. (i)⇒(ii). Suppose that

ν ≤ c ξ (2)
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for some c ∈ N.
Suppose that there exists a string σ ∈ {0, 1}∗ such that µ(σ) > 0 and ν(σ) = 0.

Then, there exist a string τ ∈ {0, 1}∗ and a bit k ∈ {0, 1} such that µ(τ0) > 0,

µ(τ1) > 0, ν(τ) > 0 and ν(τk) = 0. For this τ , we have dτ (µ||ν) = ∞ and

D∞(µ||ν) = ∞. Thus, the condition (ii) holds.

Now assume that

µ(σ) > 0 ⇒ ν(σ) > 0 (3)

for all σ ∈ {0, 1}∗. Fix an arbitrary n ∈ N. For all σ ∈ {0, 1}n such that µ(σ) > 0,

we have

ln
µ(σ)

ξ(σ)
≤ ln

µ(σ)

ν(σ)
+ ln c (4)

by (2). Here note that ξ(σ) > 0 by (3) and (2). By taking the integral of (4) with

respect to µ, we have

Dn(µ||ξ) ≤ Dn(µ||ν) + ln c

by Remark 3.1. Since both Dn are non-decreasing, this implies the condition (ii).

(ii)⇒(i). Let σ ∈ {0, 1}∗ be an arbitrary string. We construct a measure µ such

that the condition (ii) for this µ implies ν(σ) ≤ ecξ(σ). We define the measure µ by

µ(τ) =


ν(τ)/ν(σ) if σ ⪯ τ

1 if τ ⪯ σ

0 otherwise.

In other words, µ is zero outside the cylinder [σ] and is proportional to ν inside [σ].

Note that for any string ρ ∈ {0, 1}∗ such that |ρ| = |σ|, the ratio µ(ρτ)/ν(ρτ) is

constant for all τ ∈ {0, 1}∗. Thus, D|σ|(µ||ν) = D∞(µ||ν). Hence,

c ≥ D∞(µ||ξ)−D∞(µ||ν) ≥ D|σ|(µ||ξ)−D|σ|(µ||ν) = ln
µ(σ)

ξ(σ)
− ln

µ(σ)

ν(σ)
,

where the last equality follows by Remark 3.1. Hence we have ν(σ) ≤ ecξ(σ).

Since σ is arbitrary, the condition (i) holds. □

3.3. Infinite chain rule for KL divergence. Here, with independent interest, we

show that D∞(µ||ξ) is nothing but the usual KL divergence.

Let us recall the KL divergence on a non-discrete space. Let µ, ξ be measures on

{0, 1}N. Then, the KL divergence of µ with respect to ξ is defined by

D(µ||ξ) =
∫

dµ

dξ
ln

dµ

dξ
dξ =

∫
ln

dµ

dξ
dµ

where 0 · log 0 = 0 and ln is the natural logarithm, and dµ
dξ

is the Radon-Nikodym

derivative of µ with respect to ξ. If µ is the derivative dµ
dξ

does not exist, then let

D(µ||ξ) = ∞.
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Proposition 3.3. Let ξ, µ be measures on {0, 1}N. Then,

D∞(µ||ξ) = D(µ||ξ).

This is an infinite version of the chain rule for KL divergence in Remark 3.1. The

essential reason for this is that the Radon-Nikodym derivative dµ
dξ

can be approxi-

mated by
µ(X≤n)

ξ(X≤n)
. For proof, we use the following facts.

Lemma 3.4 (Theorem 5.3.3 in [11] in our terminology). Suppose that ξ(σ) = 0 ⇒
µ(σ) = 0 for all σ ∈ {0, 1}∗. Let f(X) = lim supn

µ(X≤n)

ξ(X≤n)
. Then,

µ(A) =

∫
A

f dξ + µ(A ∩ {f(X) = ∞})

for all measurable sets A.

Remark 3.5. (i) The sequence (
µ(X≤n)

ξ(X≤n)
)n is a non-negative martingale with

respect to ξ; see [11, Theorem 5.3.4].

(ii) Hence, ξ({f(X) = ∞}) = 0 by Doob’s martingale maximal inequality.

(iii) If µ ≪ ξ, then f = limn
µ(X≤n)

ξ(X≤n)
= dµ

dξ
, ξ-almost surely.

Proposition 3.3. We divide the proof into four cases.

Case 1: dµ
dξ

exists and D(µ||ξ) < ∞.

We will show that (
µ(X≤n)

ξ(X≤n)
ln

µ(X≤n)

ξ(X≤n)
)n is uniformly integrable with respect to ξ.

For K ∈ N, let

UK
n = {X ∈ {0, 1}N :

µ(X≤n)

ξ(X≤n)
> K}.

It suffices to show that

sup
n

∫
UK
n

∣∣∣∣µ(X≤n)

ξ(X≤n)
ln

µ(X≤n)

ξ(X≤n)

∣∣∣∣ dξ → 0 as K → ∞.

Let AK
n = {σ ∈ {0, 1}n : µ(σ)/ξ(σ) > K}. For K > 1, we have ln(µ(σ)/ξ(σ)) >

lnK > 0. Thus,∫
UK
n

∣∣∣∣µ(X≤n)

ξ(X≤n)
ln

µ(X≤n)

ξ(X≤n)

∣∣∣∣ dξ =
∑
σ∈AK

n

ξ(σ)
µ(σ)

ξ(σ)
ln

µ(σ)

ξ(σ)

≤
∑
σ∈AK

n

∫
[σ]

dµ

dξ
ln

dµ

dξ
dξ =

∫
UK
n

dµ

dξ
ln

dµ

dξ
dξ (5)

Here, we used Jensen’s inequality on [σ] with the convex function g(x) = x lnx:

g(
1

ξ(σ)

∫
[σ]

dµ

dξ
dξ) ≤ 1

ξ(σ)

∫
[σ]

g(
dµ

dξ
)dξ. (6)

Since µ(X≤n)/ξ(X≤n) is a non-negative martingale by Remark 3.5, we have µ(UK
n ) <

1
K
. From the epsilon-delta type characterization of absolute continuity (see [18,

Proposition 15.5] for a general measure space and [5, Theorem 2.5.7] for the Lebesgue
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integral), the supremum of the last term in (5) goes to 0 as K → ∞. This shows

uniform integrability.

Finally, we use the Vitali convergence theorem to deduce

D∞(µ||ξ) = lim
n

E[
µ(X≤n)

ξ(X≤n)
ln

µ(X≤n)

ξ(X≤n)
] = E[

dµ

dξ
ln

dµ

dξ
] = D(µ||ξ)

by Remark 3.5 (iii).

Case 2: dµ
dξ

exists and D(µ||ξ) = ∞.

Then, D∞(µ||ξ) = ∞ because, by the finite chain rule for KL divergence, we have

D∞(µ||ξ) = lim
n

Eµ[ln
µ(X≤n)

ξ(X≤n)
] ≥ Eµ[ln

dµ

dξ
] = D(µ||ξ),

where we have used Fatou’s lemma in deducing the inequality.

Case 3: dµ
dξ

does not exist and ξ(σ) = 0 ⇒ µ(σ) = 0 for all σ ∈ {0, 1}∗.
By Lemma 3.4, µ({f(X) = ∞}) = ϵ > 0. Then, for each K > 0, we have

µ({limn
µ(X≤n)

ξ(X≤n)
> K}) ≥ ϵ, and thus, there exists n ∈ N such that µ({µ(X≤n)

ξ(X≤n)
>

K}) > ϵ/2, which impliesDn(µ||ξ) ≥ ϵ lnK
2

. SinceK is arbitrary, we haveD∞(µ||ξ) =
∞.

Case 4: ξ(σ) = 0 and µ(σ) > 0 for some σ ∈ {0, 1}∗.
In this case, we have D|σ|(µ||ξ) ≥ µ(σ) ln µ(σ)

ξ(σ)
= ∞. Thus, D∞(µ||ξ) = ∞. Since

µ ̸≪ ξ, we also have D(µ||ξ) = ∞.

□

4. Rate of convergence

Let µ be a computable model measure on {0, 1}N. Then, for any computable

measure ξ that dominates µ, we have D∞(µ||ξ) < ∞ by Theorem 3.2. Hence, any

sufficiently general prediction converges to the conditional model measure, almost

surely. In this section, we discuss its rate of convergence. The main result here is

Martin-Löf randomness of the KL divergence, from which we show that the conver-

gence rate is almost the same for any sufficiently general prediction.

4.1. Martin-Löf randomness of KL divergence. We review Martin-Löf random

left-c.e. reals to analyze the convergence rate. For details, see such as [9, Chapter

9].

A set U ⊆ R is a c.e. open set if there exists a computable sequence (an, bn)n∈N
of open intervals with rational endpoints such that U =

⋃
n(an, bn). Let λ be the

Lebesgue measure on R. A ML-test with respect to λ is a sequence (Un)n of

uniformly c.e. open sets with λ(Un) ≤ 2−n for all n ∈ N. A real α ∈ R is called

ML-random if α ̸∈
⋂

n Un for every ML-test (Un)n.
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An example of left-c.e. ML-random reals is the halting probability. The halting

probability ΩU of a prefix-free Turing machine U is defined by ΩU =
∑

σ∈dom(U) 2
−|σ|.

Then, ΩU is a left-c.e. ML-random real for each universal prefix-free Turing machine

U . This ΩU is known as Chaitin’s omega. Conversely, any left-c.e. ML-random real

in (0, 1) is the halting probability of some universal machine; see [9, Theorem 9.2.2,

Theorem 9.2.3].

Theorem 4.1. Let µ be a computable model measure on {0, 1}N. Then, D∞(µ||ξ)
is a finite left-c.e. ML-random real for all sufficiently general computable measures

ξ.

We can discuss the convergence rate from this Martin-Löf randomness. This is

because all ML-random reals have almost the same rate of convergence, as follows:

Theorem 4.2 ([1], see also [16]). Let α, β be left-c.e. reals with their increasing

computable approximations (αs), (βs). If β is ML-random, then

lim
s→∞

α− αs

β − βs

exists

and is independent from the approximation. Furthermore, the limit is zero if and

only if α is not ML-random.

This theorem means that the convergence rate of ML-random left-c.e. reals is the

same up to a multiplicative constant and much slower than that of non-ML-random

left-c.e. reals.

Now we give a proof of Theorem 4.1. First we construct a computable measure

ν such that D∞(µ||ν) is ML-random. Then, we claim that if a computable measure

ξ dominates ν, then D∞(µ||ξ) − D∞(µ||ν) is a left-c.e. real, which implies ML-

randomness of D∞(µ||ξ) by a result of Solovay reducibility.

Lemma 4.3. Let µ be a computable measure. Then, there exists a computable

measure ν such that

• the Radon-Nikodym derivative dµ
dν

exists,

• dµ
dν

is a constant function on a µ-measure 1 set and 0 outside it,

• the constant value is a finite left-c.e. ML-random real.

In particular, D∞(µ||ν) is a finite left-c.e. ML-random real.

Proof. First, we define the computable measure ν. Let (zn)n∈N be a sequence of

uniformly computable positive reals such that s =
∑

n∈N zn < 1 is a ML-random

real. Let Zσ ∈ {0, 1}N be a computable sequence uniformly in σ such that σ ≺ Zσ

and µ(Zσ) = 0, whose existence will be shown in Lemma 4.4 below.
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Define measures µn, ν by

µn(σ) =


µ(σ) if |σ| ≤ n

µ(τ) if |σ| > n, τ = σ≤n, σ ≺ Zτ

0 if |σ| > n, τ = σ≤n, σ ̸≺ Zτ

for all σ ∈ {0, 1}∗ and

ν =
∑
n

znµn + (1− s)µ. (7)

The measure µn coincides with µ up to depth n, but beyond that point it collapses

the distribution onto a single predetermined infinite path Zτ extending each prefix

τ of length n; in other words, all of the mass that µ assigns to τ is concentrated

along one chosen branch, and every other continuation gets zero. The measure ν

mixes the collapsed measures µn with weights zn together with a portion of the

original measure µ, so it combines µ with versions that eventually follow a single

deterministic path.

Now, we claim that the measure ν is computable. This is because

ν(σ) =
∑
n<|σ|

znµn(σ) +
∑
n≥|σ|

znµn(σ) + (1− s)µ(σ)

=
∑
n<|σ|

znµn(σ) + (1−
∑
n<|σ|

zn)µ(σ).

Next we find dµ
dν
. Because µ ≪ ν, by Remark 3.5 (iii), dµ

dν
= limn

µ(X≤n)

ν(X≤n)
ν-almost

surely.

Consider X ∈ {0, 1}N such that µ(X≤n) > 0 for all n. Then, µ-almost such

sequences satisfy X ̸̸= Zσ for any σ ∈ {0, 1}∗. For each n and sufficiently large k

depending on n, we have µn(X≤k) = 0. Thus, limk
µ(X≤k)

ν(X≤k)
= 1

1−s
.

If X = Zσ for some σ ∈ {0, 1}∗, then

µ(X≤n) → µ(X) = µ(Zσ) = 0,

ν(X≤n) → ν(X) =
∑

{znµn(σ) : Zσ = X} > 0,

as n → ∞. Hence, limk
µ(X≤k)

ν(X≤k)
= 0.

We also observe that the set of X such that µ(X≤n) = 0 for some n has µ-measure

0. Because s is a left-c.e. ML-random, so is 1
1−s

. Hence, the first half of the claim

follows.

Finally,

D(µ||ν) =
∫

ln
dµ

dν
dµ = ln

1

1− s
,

which is ML-random by Proposition 4.5 below. □

Lemma 4.4. For each σ ∈ {0, 1}∗, we can compute a sequence Zσ ∈ {0, 1}N such

that σ ≺ Zσ and µ(Zσ) = 0. Furthermore, the construction is uniform in σ.
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We construct Zσ as the limit of extending sequences σ = τ0 ≺ τ1 ≺ τ2 · · · .
One might attempt to define τk+1 from τk with the following properties:

• τk ≺ τk+1,

• |τk+1| = |τk|+ 1,

• µ(τk+1) <
2
3
· µ(τk).

Roughly saying, one computes the conditional probability and takes the smaller one.

However, this simple idea does not work. Since µ(σ) may be 0 for some σ ∈ {0, 1}∗,
the conditional probability may not be computable.

To make the construction uniform, we need the following modified strategy to

construct it.

Proof. Let p, q ∈ (0, 1) be rational numbers such that

0 < p < q < 1, pq >
1

2
,

for example p = 3
4
and q = 4

5
.

Let τ0 = σ.

Suppose τk is already defined and satisfies

µ(τk) ≤ qk max
{
µ(σ), pk

}
. (8)

Notice that (8) holds for k = 0.

Now we define τk+1 so that τk ≺ τk+1, |τk+1| = |τk|+ 1,

µ(τk+1) < qk+1max
{
µ(σ), pk+1

}
. (9)

We claim that τk+1 computationally can be found. If neither of the strings extending

τk satisfies (9), then

µ(τk) ≥ 2qk+1max
{
µ(σ), pk+1

}
> qk max

{
µ(σ), pk

}
,

which contradicts (8). Hence, one of the two strings extending τk satisfies (9), which

can be found computably.

Finally, the claim follows by letting k tend to infinity in (8). □

Proposition 4.5. Let I be an open interval in the real line and f : I → R be a

computable function in C1. If z ∈ I is ML-random and f ′(z) ̸= 0, then f(z) is

ML-random. Here f ′ is the derivative of f .

This fact follows from the more advanced fact called randomness preservation or

conservation of randomness [4, Theorem 3.2]. However, we give a direct proof here.

Proof. Without loss of generality, we can assume f ′(z) > 0. Because f ′ is continuous,

there exists a closed interval [a, b] with rational endpoints such that z ∈ [a, b] ⊆ I and

f ′(x) > 0 for every x ∈ [a, b]. Because f ′ is continuous and [a, b] is a bounded closed

set, by the extreme value theorem, we have a positive rational m < infx∈[a,b] f
′(x).
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Suppose f(z) is not ML-random. Then there exists a ML-test (Un)n such that

f(z) ∈
⋂

n Un. Let Vn = {x : f(x) ∈ Un} ∩ [a, b]. Then, (Vn)n is a sequence of

uniformly c.e. open sets. We also have z ∈
⋂

n Vn because f(z) ∈ Un for all n.

We claim that µ(Vn) ≤ 2−n/m for all n. When some interval (c, d) ⊆ [f(a), f(b)]

is enumerated into Un, the corresponding interval (f−1(c), f−1(d)) ⊆ [a, b] is enu-

merated into Vn. By the mean-value theorem, there exists w ∈ (f−1(c), f−1(d)) such

that

(d− c) = f ′(w)(f−1(d)− f−1(c)) ≥ m(f−1(d)− f−1(c)).

Hence, the claim follows. □

The last piece for the proof is the following result on Solovay reducibility. For a

proof, see [9, Theorem 9.1.4] or [19, Proposition 3.2.27].

Proposition 4.6. The sum of a left-c.e. ML-random real and a left-c.e. real is

ML-random.

Theorem 4.1. Let ν be the measure constructed in Lemma 4.3. Let ξ be a measure

dominating ν. Then,

D(µ||ξ) =
∫

ln
dµ

dξ
dµ =

∫
ln

dµ

dν
dµ+

∫
dµ

dν
ln

dν

dξ
dν = D(µ||ν) + αD(ν||ξ),

where α is the left-c.e. real such that dµ
dν

= α µ-a.s. Here, D(µ||ν) is ML-random by

Lemma 4.3 and D(µ||ν) and D(ν||ξ) are left-c.e., as in Proposition 3.3. Thus, by

Proposition 4.6, D∞(µ||ξ) is ML-random. □

4.2. Lp-norm of measures. We begin by introducing distances between measures

on the finite alphabet {0, 1}. These distances will later be applied to conditional

distributions arising from measures on the infinite sequence space {0, 1}N.
Let µ, ξ be measures on the discrete space {0, 1}. For p ≥ 1, the distance between

µ and ξ by the Lp-norm is

||µ− ξ||p = (
∑

k∈{0,1}

|µ(k)− ξ(k)|p)1/p.

Let

ℓp(µ, ξ) = ||µ− ξ||pp.
Some closely related distances are:

• ℓ1(µ, ξ) = ||µ− ξ||1 is the Manhattan distance.

• ℓ2(µ, ξ) = ||µ− ξ||22 is the squared Euclidian distance.

• 1
2
ℓ1(µ, ξ) =

1
2
||µ− ξ||1 is the total variation distance.

We now extend these notions to measures on the sequence space {0, 1}N, in the

same way as was previously done for the KL divergence. For measures µ, ξ on

{0, 1}N, we write

• ℓp,σ(µ, ξ) = ℓp(µ(·|σ), ξ(·|σ)),
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• Lp,n(µ, ξ) =
∑n

k=1EX∼µ[ℓp,X<k
(µ, ξ)],

• Lp,∞(µ, ξ) = limn→∞ Lp,n(µ, ξ).

If µ, ξ, and p are computable and Lp,∞(µ, ξ) is finite, then Lp,∞(µ, ξ) is left-c.e.

Let µ be a computable measure on {0, 1}N. We ask at which p the left-c.e. reals

D∞(µ, ξ) and Lp,∞(µ, ξ) have the same rate of convergence, which mainly depends

on µ.

In the theory of algorithmic randomness, Solovay reducibility measures the con-

vergence rate of left-c.e. reals. Instead of the original definition by Solovay, we use

the following characterization by Downey, Hirschfeldt, and Nies [10]; see also [9,

Theorem 9.1.8]. For two left-c.e. reals α, β, we say that α is Solovay reducible to

β, denoted by α ≤S β, if there exists a constant c ∈ N and a left-c.e. real γ such

that cβ = α + γ. Roughly saying, α ≤S β means that the convergence rate of β is

not faster than α. The induced equivalence relation, denoted by ≡S, is defined by

α ≡S β ⇐⇒ (α ≤S β and β ≤S α). If α is ML-random and α ≤S β, then β is

ML-random by Proposition 4.6.

Definition 4.7. We define R(µ) to be the set of positive computable reals p such

that Lp,∞(µ, ξ) < ∞ and D∞(µ, ξ) ≡S Lp,∞(µ, ξ) for all computable measures ξ

dominating µ.

In what follows, we determine R(µ) for Dirac measures µ and separated measures

µ. If R(µ) is a single point set, we write R(µ) = p for R(µ) = {p}.
The rough rate of convergence of left-c.e. reals can be represented by the effective

Hausdorff dimension. Let K be the prefix-free Kolmogorov complexity that is,

K(σ) = min{|τ | : U(τ) = σ} where U is a fixed universal prefix-free Turing

machine. The Levin-Schnorr theorem states that X ∈ {0, 1}N is ML-random if and

only if K(X ↾ n) > n − O(1) where we identify a real in the unit interval with its

binary expansion. The effective Hausdorff dimension of X ∈ {0, 1}N is defined by

dim(X) = lim inf
n

K(X ↾ n)
n

.

In particular, dim(X) = 1 for each ML-random sequence X. See [9, Chapter 13] for

details.

Theorem 4.8 (Theorem 3.2 in [25]). Let (an)n be a sequence of uniformly com-

putable positive reals such that
∑

n an is finite and is ML-random. Then, the follow-

ing holds:

(i) dim(
∑

n(an)
p) = 1/p for each computable p ≥ 1.

(ii)
∑

n(an)
p = ∞ for each p ∈ (0, 1).

The original statement by Tadaki is about the halting probability but the state-

ment also holds for any sequence of uniformly computable positive reals whose sum

is finite and ML-random by almost the same proof.
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4.3. Case of Dirac measures. From now on, we discuss the rate of convergence

more concretely. First, we consider the case in which the model measure µ is a Dirac

measure, which means that the model is deterministic.

Let µ be a computable Dirac measure; that is, µ = 1A for some A ∈ {0, 1}N.
Because A is an atom of the computable measure µ, the sequence A is computable;

see, for example, [9, Lemma 6.12.7]. The goal is to evaluate the error of ξ

1− ξ(An|A<n)

for each n ∈ N for general computable prediction measures ξ.

Proposition 4.9. Let A ∈ {0, 1}N be a computable sequence and µ = 1A. Then,

R(µ) = 1. In particular, L1,∞(µ, ξ) is finite and is a left-c.e. ML-random real for

all sufficiently general computable prediction measures ξ.

Lemma 4.10. Let A ∈ {0, 1}N be a computable sequence and µ = 1A. Let ξ be a

computable measure dominating µ. Then,

L1,∞(µ, ξ) = 2
∞∑
n=1

(1− ξ(An|A<n)).

Proof. For each σ ∈ {0, 1}∗, we have

ℓ1,σ = |µ(0|σ)− ξ(0|σ)|+ |µ(1|σ)− ξ(1|σ)|.

Since µ = 1A, we have

EX∼µ[ℓ1,X<n(µ, ξ)] = |µ(0|A<n)− ξ(0|A<n)|+ |µ(1|A<n)− ξ(1|A<n)|

for each n ∈ N. Since µ(An|A<n) = 1 and µ(An|A<n) = 0 where k = 1− k, we have

L1,∞(µ, ξ) =
∞∑
n=1

EX∼µ[ℓ1,X<n(µ, ξ)] =
∞∑
n=1

(1− ξ(An|A<n) + ξ(An|A<n)).

Finally, notice that ξ(An|A<n) = 1− ξ(An|A<n). Hence, the claim follows. □

Lemma 4.11. Let A ∈ {0, 1}N be a computable sequence and µ = 1A. Then,

1 ∈ R(µ).

Proof. Let ξ be a computable measure dominating µ.

First, we demonstrate that L1,∞(µ, ξ) < ∞. By the inequality

ln(1− x) ≤ −x

for all x ∈ R, we have

1− ξ(An|A<n) ≤ − ln ξ(An|A<n) = dA<n(µ||ξ). (10)

From this and by Lemma 4.10, we have

L1,∞(µ, ξ) ≤ 2D∞(µ||ξ) < ∞

where the last inequality follows from Theorem 3.2.
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Let f(n) be a computable function from N to R such that

ℓ1,A<n(µ, ξ) + f(n) = 2dA<n(µ||ξ).

Then, f(n) ≥ 0 for all n by (10) Hence,

L1,∞(µ, ξ) +
∑
n

f(n) = 2D∞(µ||ξ),

which implies L1,∞(µ, ξ) ≤S D∞(µ||ξ).
Next, we prove the converse relation. For sufficiently large n, we have

ℓ1,A<n(µ||ξ) > 2(ln 2)(1− ξ(An|A<n)) ≥ − ln ξ(An|A<n) = dA<n(µ||ξ),

where we used 0 < ln 2 < 1 for the first inequality and ln(1− x) ≥ −2(ln 2)x for

all x ∈ [0, 1/2] for the second inequality. Also note that, since L1,∞(µ, ξ) < ∞ by

above, we have 1 − ξ(An|A<n) → 0 as n → ∞. Thus, there exists a left-c.e. real α

such that L1,∞(µ, ξ) = D∞(µ||ξ) + α. Hence, D∞(µ||ξ) ≤S L1,∞(µ, ξ). □

Lemma 4.12. Let A ∈ {0, 1}N be a computable sequence and µ = 1A. Then,

p ̸∈ R(µ) for each positive computable real p ̸= 1.

Proof. Let ξ be a computable measure on {0, 1}N dominating ν constructed in

Lemma 4.3. Then, L1,∞(µ, ξ) is ML-random by Lemma 4.11. We also have

Lp,∞(µ, ξ) =
∞∑
n=1

ℓp,A<n(µ, ξ) =
∞∑
n=1

∑
a∈{0,1}

|µ(a|A<n)− ξ(a|A<n)|p

= 2
∞∑
n=1

|µ(An|A<n)− ξ(An|A<n)|p.

Now, by Theorem 4.8 (ii), Lp,∞(µ, ξ) = ∞ for each computable p ∈ (0, 1). Similarly,

by Theorem 4.8 (i), Lp,∞(µ, ξ) < ∞ is not ML-random for each computable p > 1,

which is not Solovay equivalent to a left-c.e. ML-random real D∞(µ, ξ). Hence,

p ̸∈ R(µ) for each positive computable real p ̸= 1. □

Proof of Proposition 4.9. The claim R(µ) = 1 follows from Lemma 4.11 and Lemma

4.12. Since 1 ∈ R(µ), we have L1,∞(µ, ξ) < ∞ and D∞(µ||ξ) ≡S L1,∞(µ, ξ) for all

computable measures ξ dominating µ. By Theorem 4.1, there exists a computable

measure ν such that D∞(µ||ξ) is a left-c.e. ML-random real for all computable mea-

sures ξ dominating ν. Thus, L1,∞(µ, ξ) is ML-random for all computable measures

ξ dominating µ and ν. □

When the model measure is a Dirac measure, the rate of convergence can be

expressed more concretely by time-bounded Kolmogorov complexity. Let h : N → N
be a computable function, and let M :⊆ {0, 1}∗ → N be a prefix-free machine. The

Kolmogorov complexity relative to M with time bound h is

Kh
M(σ) = min{|τ | : M(τ) = σ in at most h(|σ|) steps }.
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Here, h : N → N is a total computable function. We write Kh(σ) as the mean

Kh
U(σ) for a fixed universal prefix-free machine U .

Proposition 4.13. Let A ∈ {0, 1}N be a computable sequence.

(i) For every total computable prediction ξ dominating µ = 1A, there exists a

computable function h : N → N such that

Kh(n) ≤ − log(1− ξ(An|A<n)) +O(1).

(ii) For every total computable function h : N → N, we have

− log(1− ξ(An|A<n)) ≤ Kh(n) +O(1)

for all sufficiently general computable prediction measure ξ.

Here, log is the logarithm with base 2.

From this theorem, we know that the error 1− ξ(An|A<n) is essentially the same

as 2−Kh(n) up to a multiplicative constant. We use this formulation because of the

non-optimality of the time-bounded Kolmogorov complexity.

Proof. (i) By Proposition 4.9, we have∑
n

(1− ξ(An|A<n)) < ∞.

By the KC-theorem [9, Theorem 3.6.1], there exists a prefix-free machine M :⊆
{0, 1}∗ → N and a computable sequence (σn)n of strings such that

M(σn) = n, |σn| ≤ − log(1− ξ(An|A<n)) +O(1).

Let τ ∈ {0, 1}∗ be a string such that U(τσ) ≃ M(σ) for all σ ∈ {0, 1}∗. Then, the

function n 7→ U(τσn) is a total computable function. Therefore, there exists a total

computable function h : N → N such that, for every n ∈ N, the computation of

U(τσn) halts within at most h(n) steps. By this definition of h, we obtain

Kh(n) ≤ |τ |+ |σn| .

(ii) We define a computable prediction measure ν by

ν =
∑
n

2−Kh(n)1A<nAn0N + (1− s)1A

where s =
∑

n 2
−Kh(n) < 1 and k = 1− k for k ∈ {0, 1}.

We claim that this measure ν is computable. We show that ν(σ) is computable

uniformly in σ ∈ {0, 1}∗. If σ ≺ A, then

ν(σ) =
∑
n>|σ|

2−Kh(n) + (1− s) = 1−
∑
n≤|σ|

2−Kh(n).

If σ = A<kAk0
i for some k, i ∈ N, then

ν(σ) = 2−Kh(k).
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If σ = A<kAk0
i1τ for some k, i ∈ N and τ ∈ {0, 1}∗, then

ν(σ) = 0.

In any case, ν(σ) is computable from n. Furthermore, these relations are decidable.

Let ξ be a computable measure dominating ν. Then, there exists c ∈ N such that

ν(σ) ≤ cξ(σ) for all σ ∈ {0, 1}∗. Then,

1− ξ(An|A<n) = 1− ξ(A≤n)

ξ(A<n)
=

ξ(A<nAn)

ξ(A<n)
≥ ν(A<nAn)

c
=

2−Kh(n)

c
.

□

4.4. Case of separated measures. Now, we discuss the convergence rate of gen-

eral computable predictions when the computable model measure is separated. In

this case, the convergence rate is much slower than that for the Dirac measures.

We call a measure to be separated if the conditional probabilities are far away

from 0 and 1. A formal definition is as follows.

Definition 4.14 (see before Theorem 196 in [22]). A measure µ on {0, 1}N is called

separated (from 0 to 1), if

inf
σ∈{0,1}∗, k∈{0,1}

µ(k|σ) > 0.

Remark 4.15. Li-Vitányi’s book called this notion ”conditionally bounded away

from zero” [15, Definition 5.2.3].

Proposition 4.16. Let µ be a computable separated measure. Then, R(µ) = 2.

In particular, L2,∞(µ, ξ) < ∞ and is a left-c.e. ML-random real for all sufficiently

general computable prediction measure ξ.

Lemma 4.17. Let µ be a computable separated measure. Then, 2 ∈ R(µ).

In the following proof, we use a version of Pinsker’s inequality and a reverse

Pinsker inequality. A Pinsker inequality bounds the squared total variation from

above by the KL divergence; see, for example, Verdú [26, (51)]. A reverse inequality

does not hold in general, but it does under separation assumptions; see, for instance,

[8, Lemma 6.3]. For a more comprehensive survey, see the work of Sason [21].

Proof. Let ξ be a computable measure dominating µ. By Pinsker’s inequality and

a reverse Pinsker inequality, there are a, b ∈ N such that

(ℓ1,σ(µ, ξ))
2 ≤ a · dσ(µ||ξ) ≤ b · (ℓ1,σ(µ, ξ))2.

Now we look at the relation between (ℓ1,σ(µ, ξ))
2 and ℓ2,σ(µ, ξ). We use the inequal-

ities

x2 + y2 ≤ (x+ y)2 ≤ 2(x2 + y2)
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for x, y ≥ 0 to deduce

ℓ2,σ(µ, ξ) ≤ a · dσ(µ||ξ) ≤ 2b · ℓ2,σ(µ, ξ). (11)

The first inequality implies

L2,∞(µ, ξ) ≤ aD∞(µ||ξ) < ∞

by Theorem 4.1, and thus 2 ∈ R(µ). The first inequality in (11) also implies the

existence of a computable function f : {0, 1}∗ → R such that

ℓ2,σ(µ, ξ) + f(σ) = adσ(µ||ξ),

and thus the existence of a left-c.e. real γ such that

L2,σ(µ, ξ) + γ = aD∞(µ||ξ).

Hence, L2,∞(µ, ξ) ≤S D∞(µ, ξ). Similarly, the second inequality in (11) implies

D∞(µ, ξ) ≤S L2,∞(µ, ξ). Hence, we have L2,∞(µ, ξ) ≡S D∞(µ, ξ). □

Lemma 4.18. Let µ be a computable separated measure. Then, p ̸∈ R(µ) for each

positive computable real p ̸= 2.

Proof. By Theorem 4.1, there exists a computable ξ such that ξ dominates µ and

D∞(µ||ξ) is a finite left-c.e. ML-random real. By Lemma 4.17,D∞(µ||ξ) ≡S L2,∞(µ, ξ),

which implies L2,∞(µ, ξ) is a finite left-c.e. ML-random real by Proposition 4.6. By

(ii) of Theorem 4.8, we have Lp,∞(µ, ξ) = ∞ for each p ∈ (0, 2). In particular,

p ̸∈ R(µ) for each p ∈ (0, 2).

Let p > 2 be a computable real. We construct a computable measure ν such that

(i) ν dominates µ,

(ii) dim(L2,∞(µ, ν)) = 1
2
.

(iii) dim(Lp,∞(µ, ν)) = 1
p
.

Suppose such a measure ν exists and p ∈ R(µ). By 2 ∈ R(µ) and (i), we have

D∞(µ, ν) ≡S L2,∞(µ, ν). By p ∈ R(µ) and (i), we have D∞(µ, ν) ≡S Lp,∞(µ, ν).

Since Solovay equivalence implies the same effective Hausdorff dimension, we have

dim(L2,∞(µ, ν)) = dim(Lp,∞(µ, ν)), which contradicts with (ii) and (iii). Thus,

p ̸∈ R(µ).

The construction of ν is as follows. Let α be a rational such that 0 < α <

inf{µ(a|σ) : a ∈ {0, 1}, σ ∈ {0, 1}∗}. Since µ is separated, such α exists. Let

(zn)n be a computable sequence of positive rationals such that zn < α
2
and

∑∞
n=0 zn

is a finite left-c.e. ML-random real. Fix a sufficiently small rational ϵ > 0. Consider

a computable function σ ∈ {0, 1}∗ 7→ aσ ∈ {0, 1} such that µ(aσ|σ) > 1
2
− ϵ. We

define a computable measure ν as follows:

ν(a|σ) =

µ(a|σ)− z|σ| if a = aσ,

µ(a|σ) + z|σ| if a ̸= aσ.
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(i). First we evaluate ν(a|σ)/µ(a|σ). If a = aσ, then

ν(a|σ)
µ(a|σ)

= 1−
z|σ|

µ(aσ|σ)
≥ 1−

z|σ|
1/2− ϵ

.

If a ̸= σ, then

ν(a|σ)
µ(a|σ)

= 1 +
z|σ|

µ(a|σ)
≥ 1.

Thus, we have

ν(σ) =

|σ|∏
n=1

ν(σn|σ<n) ≥
|σ|∏
n=1

µ(σn|σ<n)(1−
zn−1

1/2− ϵ
) ≥ µ(σ)

c

for some constant c ∈ N.
(ii)(iii). Notice that

L1,∞(µ, ν) =
∞∑
n=0

zn

is a finite left-c.e. ML-random real, and that

Lq,∞(µ, ν) =
∞∑
n=0

zqn

for any q ≥ 1. Thus, the claims follow by Theorem 4.8. □

Proof of Proposition 4.16. The claim R(µ) = 2 follows by Lemma 4.17 and Lemma

4.18. Since 2 ∈ R(µ), we have L2,∞(µ, ξ) < ∞ and D∞(µ||ξ) ≡S L2,∞(µ, ξ) for all

computable measures ξ dominating µ. By Theorem 4.1, there exists a computable

measure ν such that D∞(µ||ξ) is a left-c.e. ML-random real for all computable mea-

sures ξ dominating ν. Thus, L2,∞(µ, ξ) is ML-random for all computable measures

ξ dominating µ and ν. □
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