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Abstract

We study algorithmic randomness with respect to c.e. semimeasures, which
naturally arise as pushforward measures of partial computable mappings
and therefore play a crucial role in algorithmic randomness. We consider
four distinct randomness notions: three based on complexity and one based
on tests. We systematically clarify their inclusion relationships. Our main
contribution is to construct concrete examples that separate these notions.
Furthermore, we investigate how they interact with the classical randomness
preservation and no-randomness-from-nothing theorems, identifying precise
conditions under which they continue to hold.
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1. Introduction

Let us consider the Cantor space and a computable measure on it. What
does it mean for a point in this measure space to be random? Martin-Löf
randomness is one of the natural definitions of such randomness by tests and
it is characterized robustly through Kolmogorov complexity and martingales.

Recently, randomness with respect to c.e. semimeasures has started to
attract attention. Bienvenu et al. [1] appears to be the first study in this
area, which focused on randomness preservation and no-randomness-from-
nothing. The randomness preservation theorem states that for a computable
map defined almost everywhere, a random point is mapped to a random point
with respect to the pushforward measure. The no-randomness-from-nothing
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theorem asserts that, given a computable map defined almost everywhere,
any random point in the target space has a preimage containing a random
point in the original space. Consequently, randomness with respect to a
computable measure is preserved under computable mappings defined almost
everywhere.

In general, the pushforward measure of a partial computable mapping is a
c.e. semimeasure. How, then, should we define randomness with respect to a
c.e. semimeasure? Could it correspond to images of random sequences under
partial computable mappings, as described for computable measures? This
has a negative answer: there exist two partial computable functions with
the same pushforward measure but differing images of random sequences as
shown in Bienvenu et al. [1]. In this sense, a general extension does not
hold. We clarify the situation in this paper by defining several concepts of
randomness and examining the hierarchical structure among them.

A related paper by Barmpalias and Shen [2] explores a notion of random-
ness for c.e. semimeasures different from that proposed by Bienvenu et al.
[1].

In this paper we address the following questions:

Q1 How should one define randomness with respect to an arbitrary c.e.
semimeasure?

Q2 Do classical theorems such as randomness preservation and no-randomness-
from-nothing extend to these notions?

Let f : 2<ω → [0,∞] be a function, which corresponds to a c.e. semimea-
sure µ by f(σ) = − log µ(σ). To investigate algorithmic randomness relative
to µ, we consider the following four notions, which are motivated by analo-
gous distinctions appearing in the study of partial randomness.

(I) KA-f -complexity: KA(X ↾ n) > f(X ↾ n)−O(1).
(II) Strong K-f -complexity: K(X ↾ n)− f(X ↾ n) → ∞ as n → ∞.
(III) K-f -complexity: K(↾ n) > f(X ↾ n)−O(1).
(IV) f -ML-randomness: The definition is by tests.

The test-based notion (IV) was introduced and studied by Bienvenu et al. [1],
who developed a general framework of Martin-Löf randomness with respect
to c.e. semimeasures and established the randomness preservation property.
Building on this framework, Barmpalias and Shen [2] investigated the KA-
based definition (I) (under a different terminology) and proved no-randomness-
from-nothing under a suitable restriction on oracle use.
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While these studies addressed specific aspects of randomness with respect
to c.e. semimeasures, a systematic comparison among multiple complexity-
based definitions has not previously been undertaken. The present paper fills
this gap by introducing the four notions above and showing that they form
a proper hierarchy:

(I) ⇒ (II) ⇒ (III) ⇒ (IV),

and each implication is strict. This unifies and extends the perspectives of
Bienvenu et al. [1] and Barmpalias and Shen [2] by placing both the test-based
and complexity-based approaches within a single coherent framework, and
by clarifying the precise relationships among these four notions, answering
Q1.

Furthermore, although the study of randomness with respect to c.e. semimea-
sures has so far been developed independently of the theory of partial ran-
domness, we observe that these two areas share striking conceptual similari-
ties. In particular, the hierarchy of complexity-based and test-based random-
ness notions established in the study of partial randomness (see Hudelson’s
doctoral thesis [3] for a comprehensive account) provides a useful perspec-
tive for analyzing randomness relative to c.e. semimeasures. By bringing
these notions into the present context, we obtain a natural framework for
comparing different definitions of randomness with respect to semimeasures.
The resulting hierarchy, however, is not identical to that of partial random-
ness. This connection to partial randomness, and the clarification of how the
two hierarchies differ, constitute one of the contributions of this paper. A
summary of the related concepts and comparisons is provided in Section 2.

We also show for which randomness notions randomness preservation and
no-randomness-from-nothing results hold, answering Q2. A more detailed
explanation will be provided in Section 2.

In Section 3 we will show that all notions from (I) to (IV) are equivalent
for a computable and concave function f (Corollary 3.4). In Section 4 we will
show the implications, and in Section 5 we will show the failure of reverse
implications for an upper semicomputable and concave function f . In Section
6 we will study randomness preservation and no-randomness-from-nothing
results for the notions defined in this paper.

2. Definitions, related results, and contributions

Basic references in algorithmic randomness include Nies [4], Downey and
Hirschfeldt [5], and Shen, Uspensky, and Vereshchagin [6].
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2.1. Preliminaries

In this subsection, we recall some basic definitions and notations. We
denote by 2<ω the set of all finite binary strings. Cantor space 2ω is the set
of all infinite binary sequences, with the topology generated by cylinder sets
[σ] = {X ∈ 2ω : σ ≺ X}, where ≺ is the prefix relation. For a set A of
strings, let [A] =

⋃
σ∈A[σ]. A (probability) measure µ on the Cantor space

is uniquely determined by its values on the cylinder sets. Hence, it can be
regarded as a function µ : 2<ω → [0, 1]. A measure µ is called computable
when µ(σ) is a computable real uniformly in σ.

A semimeasure µ on the Cantor space is a function from 2<ω to [0, 1] such
that

µ(σ) ≥ µ(σ0) + µ(σ1) for all σ ∈ 2<ω.

A semimeasure µ is c.e. (or computably enumerable) if it is a lower semicom-
putable function.

For two semimeasures µ and ν, we say that µ dominates ν if there exists
a constant c ∈ ω such that ν(σ) ≤ c µ(σ) for all σ ∈ 2<ω. A c.e. semimeasure
µ is called optimal if it dominates all c.e. semimeasures. A priori complexity
KA(σ) of strings σ ∈ 2<ω is defined by − log µ(σ) with respect to an optimal
c.e. semimeasure µ where the base of log is 2. The prefix-free complexity K(σ)
is the length of the shortest input of an optimal prefix-free Turing machine
that outputs σ:

K(σ) = min{|τ | : U(τ) = σ}.

By the optimality, KA and K are both well-defined up to a constant. Both
complexities indicate how complex the input strings are. It can be shown
that KA(σ) ≤ K(σ) +O(1).

A c.e. open set U on the Cantor space is an open set that can be written
as U =

⋃
σ∈S[σ] where S is a c.e. (or equivalently computable) set of strings

in 2<ω. For a computable measure µ, a Martin-Löf test with respect to µ (or
µ-ML-test) is a sequence (Un)n of uniformly c.e. open sets with µ(Un) ≤ 2−n

for all n ∈ ω. A sequence X ∈ 2ω is called µ-ML-random if X ̸∈
⋂

n Un for
each µ-ML-test.

Let µ be a computable measure. A generalization of the Levin–Schnorr
theorem states that the following conditions are equivalent:

(i) KA(X ↾ n) > − log µ(X ↾ n)−O(1).

(ii) K(X ↾ n) + log µ(X ↾ n) → ∞ as n → ∞.

(iii) K(X ↾ n) > − log µ(X ↾ n)−O(1).
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(iv) X is µ-Martin-Löf random.

Here, X ↾ n denotes the initial segment of X of length n. The equivalences
among (i), (iii), and (iv) are straightforward, while the equivalence with (ii)
follows from the ample excess lemma (see [7] for the uniform measure and
[8, Corollary 2.32] for general computable measures).

2.2. Partial randomness

Although this paper does not primarily deal with partial randomness, we
make use of several notions that originate from this area.

The study of partial randomness seeks to capture intermediate degrees of
algorithmic randomness. Rather than the binary distinction between com-
putable and Martin-Löf random sequences, it offers a quantitative scale of
randomness, typically expressed in terms of the growth rate of Kolmogorov
complexity. While partial randomness is closely related to effective Haus-
dorff dimension (see [9] for a survey), we confine our attention to partial
randomness itself.

Terminology in the literature varies somewhat; in this paper we follow
Hudelson’s doctoral dissertation [3]. In particular, we focus on several key
notions introduced there.

Later, we define f(σ) = − log µ(σ) for a c.e. semimeasure µ. When
µ(σ) = 0, we set f(σ) = +∞. Thus, f is a function from 2<ω to [0,∞]. This
extension of the codomain requires no change in the subsequent definitions
or results.

Definition 2.1 (complexity; Chapter 4 in [3]). Let f : 2<ω → [0,∞] be a
function. A sequence X ∈ 2ω is said to be

(I) KA-f -complex if KA(X ↾ n) > f(X ↾ n)−O(1);

(II) strongly K-f -complex if K(X ↾ n)− f(X ↾ n) → ∞ as n → ∞;

(III) K-f -complex if K(X ↾ n) > f(X ↾ n)−O(1).

Definition 2.2 (test; Chapter 3 in [3]). Let f : 2<ω → [0,∞] and A ⊆ 2<ω.
The direct f -weight of A is

dwtf (A) =
∑
σ∈A

2−f(σ).
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The prefix-free f -weight of A is the supremum of dwtf (P ) over all prefix-free
subsets P ⊆ A:

pwtf (A) = sup{dwtf (P ) : P ⊆ A is prefix-free }.

A dwt-f -test is a sequence (An)n of uniformly c.e. sets such that dwtf (An) ≤
2−n for all n ∈ ω. A sequence X ∈ 2ω is dwt-f -random if X ̸∈

⋂
n[An] for

each dwt-f -test. A pwt-f -test and pwt-f -randomness are defined similarly.
A c.e. set A ⊆ 2<ω is a Solovay dwt-f -test if dwtf (A) < ∞. A sequence

X ∈ 2ω is Solovay dwt-f -random if A ∩ {σ ∈ 2<ω : σ ≺ X} is finite for any
Solovay dwt-f -test A.

Theorem 2.3 (Theorem 4.1.8, 4.1.7, and 4.1.6 in [3]). Let f : 2<ω → [0,∞]
be a computable function.

• A sequence X ∈ 2ω is KA-f -complex if and only if X is pwt-f -random.

• A sequence X ∈ 2ω is strongly K-f -complex if and only if X is Solovay
dwt-f -random.

• A sequence X ∈ 2ω is K-f -complex if and only if X is dwt-f -random.

Theorem 2.4 (Theorem 3.3.9 and 3.3.7 in [3], Corollary 4.12 in [10]). Let
f : 2<ω → [0,∞] be a computable function. If X is pwt-f -random, then X is
Solovay dwt-f -random.

Theorem 2.5 (Theorem 3.3.7 and 3.3.3 in [3]). Let f : 2<ω → [0,∞] be
a computable function. If X is Solovay dwt-f -random, then X is dwt-f -
random.

The converses of these two implications do not hold in general as shown
in Reimann and Stephan [11, Theorem 4.5, 4.7].

Historically, Tadaki [12] and Calude, Staiger, and Terwijn [13] investi-
gated randomness with respect to µ(σ) = 2−s|σ| where s ∈ (0, 1]. Later,
Higuchi, Hudelson, Simpson, and Yokoyama [10] and Simpson [14] general-
ized the linear bound sn to an arbitrary computable function f : 2<ω →
[0,∞] and studied stability under relative partial randomness.

The results above are summarized in Figure 1, adapted from Figure 1.2
in [3].

6



pwt-f-ML-randomness

Solovay dwt-f-randomness

dwt-f-ML-randomness

KA-f-complexity

Strong K-f-complexity

K-f-complexity

Figure 1: Implications for computable functions f from Hudelson [3]

2.3. Randomness with respect to c.e. semimeasures

We review notions of randomness with respect to c.e. semimeasures. Bien-
venu et al. [1] were the first authors who studied randomness with respect to
c.e. semimeasures. Their motivation was to determine whether randomness
preservation and no-randomness-from-nothing results continue to hold for
partial computable functions. Such functions naturally induce c.e. semimea-
sures.

By MLR, we denote the set of all ML-random sequences in 2ω with re-
spect to the uniform measure. To recall classical results, consider a Turing
functional Φ defined almost everywhere. Then the measure induced by Φ is
a computable measure.

Theorem 2.6 (Randomness preservation; [15, Theorem 4.2.b)]). Let Φ be a
Turing functional defined almost everywhere, and let µ denote the measure
induced by Φ. If X ∈ MLR, then Φ(X) is ML-random with respect to µ.

Theorem 2.7 (No-randomness-from-nothing; [16, Theorem 5.1]). Let Φ be
a Turing functional defined almost everywhere, and let µ denote the measure
induced by Φ. If Y is ML-random with respect to µ, then there exists a
sequence X ∈ MLR such that Φ(X) = Y .

It is natural to ask whether these results can be generalized to arbitrary
Turing functionals whose induced measures are c.e. semimeasures. Bienvenu
et al. [1] defined Martin-Löf randomness with respect to a c.e. semimeasure µ
as follows.
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Definition 2.8 ((IV) ML-randomness for c.e. semimeasures; [1, Definition
5.1]). A f -ML-test is a sequence of uniformly c.e. sets Sn ⊆ 2<ω such that∑

σ∈Sn
2−f(σ) ≤ 2−n for all n ∈ ω. A sequence X ∈ 2ω is called f -ML-random

if X ̸∈
⋂

n[Sn] for each f -ML-test (Sn)n.

This notion coincides with dwt-f -randomness when f = − log µ. As we
will see shortly, there is no need to distinguish among the three test-based
notions of randomness defined in Definition 2.2. We simply refer to dwt-f -
randomness as µ-ML-randomness. Observe that, if µ is a c.e. semimeasure,
then f = − log µ is an upper semicomputable function.

The principle of randomness preservation continues to hold for c.e. semimea-
sures.

Theorem 2.9 (Randomness preservation for c.e. semimeasures; [1, Theorem
5.4]). Let Φ be a Turing functional and X ∈ MLR ∩ dom(Φ). If µ is the
measure induced by Φ, then Y = Φ(X) is µ-ML-random.

More recently, Barmpalias and Shen [2, Proposition 4] established a no-
randomness-from-nothing result for c.e. semimeasures. The following theo-
rem restates their result in our terminology.

Theorem 2.10 (No-randomness-from-nothing for c.e. semimeasures). Let Φ
be a Turing functional that uses only the first 2n + o(1) inputs to produce n
output bits. Let µ be the c.e. semimeasure induced by Φ and f = − log µ.
If Y is KA-f -complex, then there exists a sequence X ∈ MLR such that
Φ(X) = Y .

Barmpalias and Shen [2] also obtained a related result showing that the
same conclusion holds under weaker assumptions on oracle use. Since the
formal statement is rather lengthy and not central to the present paper, we
omit it here.

2.4. Contributions

In this paper, we study the six notions introduced in Definitions 2.1
and 2.2 with respect to c.e. semimeasures. While these notions themselves
are not new, previous studies have typically assumed that the underlying
function f is computable. To the best of our knowledge, the case of non-
computable f has not been systematically explored. Here we investigate ran-
domness relative to an upper semicomputable function f , which is a weaker
assumption.
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In the study of partial randomness, it is common to restrict attention to
convex functions f .

Definition 2.11 (convex; [3, Definition 3.4.14]). A function f : 2<ω → [0,∞]
is called convex if

dwtf (σ) ≤ dwtf (σ0) + dwtf (σ1).

For example, let µ(σ) = 2−s|σ| and f(σ) = − log µ(σ) = s|σ| for some
rational s ∈ (0, 1). Then, f is a convex function because

dwtf (σ0)+dwtf (σ1) = 2−s(|σ|+1)+2−s(|σ|+1) = 2−s|σ|+1−s > 2−s|σ| = dwtf (σ).

In contrast, we focus on the case where f is concave.

Definition 2.12 (concave). A function f : 2<ω → [0,∞] is called concave if

dwtf (σ) ≥ dwtf (σ0) + dwtf (σ1).

The main topic of this paper is Martin-Löf randomness with respect to
c.e. semimeasures. Equivalently, we study f -randomness and f -complexity
for upper semicomputable and concave functions f .

We summarize our main contributions using the terminology introduced
above.
(1) Tests for concave functions

When f is concave, the three test-based randomness notions defined in
Definition 2.2 coincide. Recall that without the concavity assumption, this
hierarchy does not collapse. As a corollary, for a computable and concave
function f , the three test-based and the three complexity-based notions are
all equivalent.
(2) Complexity for upper semicomputable and concave functions

Let f be a concave function that is upper semicomputable but not nec-
essarily computable. Then, the three complexity-based notions in Defini-
tion 2.1 remain distinct. Since f may be non-computable, the correspondence
between complexity and test formulations breaks down. Concavity collapses
the test hierarchy but not the complexity hierarchy; in fact, K-f -complexity
turns out to be a stronger notion than µ-ML-randomness.

Consequently, we obtain four distinct notions of randomness for c.e.
semimeasures. The relationships among them are summarized in Figure 2.
(3) Randomness preservation and no-randomness-from-nothing
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pwt-f-ML-randomness

Solovay dwt-f-randomness

dwt-f-ML-randomness

KA-f-complexity

Strong K-f-complexity

K-f-complexity

Figure 2: Implications for upper semicomputable and concave functions f

We show that the randomness preservation property holds for strongK-f -
complexity (Theorem 6.1), strengthening the result of Bienvenu et al. [1] con-
cerning µ-ML-randomness (Theorem 2.9). We further prove that, in general,
randomness preservation does not hold for KA-f -complexity (Theorem 6.2),
indicating that the assumption of strong K-f -complexity in the preservation
result cannot be weakened to KA-f -complexity.

We also show that the no-randomness-from-nothing property fails for
strong K-f -complexity, even when oracle use is restricted (Theorem 6.3).
In other words, the condition on KA-f -complexity in the no-randomness-
from-nothing result of Barmpalias and Shen [2] (Theorem 2.10) cannot be
weakened to strong K-f -complexity, even under restricted oracle use.

3. Randomness by tests

In this section, we demonstrate that the hierarchy of randomness notions
defined by tests collapses for c.e. semimeasures. The proof is straightforward,
though its definition requires some care. However, we must discuss this, as
the hierarchy of randomness notions defined by complexity does not collapse
for c.e. semimeasures.

Although the relationship between c.e. open sets and prefix-free sets
is well known in algorithmic randomness (see Downey and Hirschfeldt [5,
Prop. 2.19.2] and Nies [4, Fact 1.8.26]), the following lemma gives a more
explicit form of this correspondence. In particular, when dealing with ran-
domness with respect to c.e. semimeasures, this formulation is convenient for
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constructing prefix-free refinements of finite open sets. Although the result
is implicit in the cited works, we restate and prove it here for completeness.

Lemma 3.1. For a finite prefix-free set S and a string σ, one can compute
a finite set T such that

(i) each string in T is an extension of σ,

(ii) S ∪ T is prefix-free, and

(iii) [S] ∪ [σ] = [S] ∪ [T ].

Proof. If S ∪ {σ} is prefix-free, then let T = {σ}. If there exists τ ∈ S such
that τ ⪯ σ, then let T = ∅. In the following, we restrict our attention to the
remaining case and suppose that there exists τ ∈ S such that σ ≺ τ .

Let U be the set of all such strings:

U = {τ ∈ S : σ ≺ τ}.

Let N be the maximum length of strings in U :

N = max{|τ | : τ ∈ U}.

By the assumption, we have N > |σ|. Then, we define

T = {ρ : σ ≺ ρ, |ρ| = N and U ∪ {ρ} is prefix-free }.

Since any two pairs of strings in T have the same length, U ∪T is prefix-free
and so is S ∪ T . If |ρ| = N , σ ≺ ρ, and ρ ̸∈ T , then we have S ∪ {ρ} is not
prefix-free, which implies that τ ≺ ρ for some τ ∈ U and [ρ] ⊆ [S]. Hence,
we have [S] ∪ [σ] = [S] ∪ [T ].

Proposition 3.2. Let f : 2<ω → [0,∞] be a function. Then, pwt-f -randomness
implies dwt-f -randomness. If f is, in addition, concave, the converse is also
true.

Remark 3.3. We make no assumptions regarding the computability of f .
Thus, dwtf (σ) for σ ∈ 2<ω may not be computable in general.

Proof. Suppose that X ∈ 2ω is not dwt-f -random. Then, there exists a
sequence (An)n of uniformly c.e. sets such that dwtf (An) ≤ 2−n andX ∈ [An]
for all n ∈ ω. By definition, pwtf (An) ≤ dwtf (An) ≤ 2−n for all n ∈ ω. Thus,
(An)n is a pwt-f -test. Hence, X is not pwt-f -random.
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Suppose further that f is concave. Suppose that X is not pwt-f -random.
Then, there exists a sequence (An)n of uniformly c.e. sets such that pwtf (An) ≤
2−n and X ∈ [An] for all n ∈ ω.

Fix n ∈ ω. Let a computable enumeration of An = {σ0, σ1, · · · } be
given, which may be finite. By Lemma 3.1, by induction, we can computably
construct a sequence (Tk)k of finite sets such that

(i) each string in Tk is an extension of σk,

(ii)
⋃

k Tk is prefix-free, and

(iii) [An] =
⋃

k[Tk].

Let S ⊆ An be the set of all strings σ such that each proper prefix of σ
is not in An. Since S is a prefix-free subset of An, we have dwtf (S) ≤ 2−n.
Each string in Tk is an extension of a string in An, and thus an extension of a
string in S. Since f is concave, we have dwtf (

⋃
k Tk) ≤ dwtf (S). Note that

the set
⋃

k Tk is a c.e. set of strings while we do not impose any computability
on S.

We use this construction for each n. Then, we can construct a sequence
(Bn)n of uniformly c.e. sets such that dwtf (Bn) ≤ 2−n and X ∈ [Bn] for all
n ∈ ω. Thus, X is not dwt-f -random.

If we further assume that f is computable, then by Theorems 2.3, 2.4,
and 2.5, we obtain the following.

Corollary 3.4. Let f : 2<ω → [0,∞] be a computable concave function.
Then, statements (I) through (IV) defined in Definition 2.1 and Defini-
tion 2.8 are equivalent.

4. Logical implications among conditions (I)–(IV)

From now on, we do not assume that the function f is computable. We
sometimes assume that f is upper semicomputable and sometimes do not
assume any computability on f . Notice that condition (II) strong K-f -
complexity implies (III) K-f -complexity obviously.

4.1. (I) implies (II)

We show that (I) KA-f -complexity implies (II) strong K-f -complexity.
Andreev and Kumok [17] attribute Theorem 4.1 to an unpublished result by
Lempp, Miller, Ng, and Turetsky (2010). While no proof is provided in their
work, we establish the following result in this paper.
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Theorem 4.1. Let X ∈ 2ω. Then,

K(X ↾ n)−KA(X ↾ n) → ∞ as n → ∞.

Corollary 4.2. Let f : 2<ω → [0,∞] be a function. Then, KA-f -complexity
implies strong K-f -complexity.

Notice that we do not assume any computability on f in the above claim.

Remark 4.3. This implication has been shown for a computable function
f through the equivalence with strong f -ML-randomness and Solovay f -
randomness, respectively; see Hudelson [3].

We will establish this theorem by adapting the proof of [10, Theorem 4.5].

Proof. Let µ be the uniform measure on 2ω and MLR be the set of all Martin-
Löf random sequences with respect to µ. Given X ∈ 2ω, let Y ∈ 2ω be such
that X ≤T Y ∈ MLR by the Kučera-Gács theorem. Let Φ be a Turing
reduction such that X = ΦY .

For each σ ∈ 2<ω, we define Vσ by

Vσ = {Y : σ ⪯ ΦY }.

Notice that, by definition, we have Y ∈ VX↾n for all n. We define ν by
ν(σ) = µ(Vσ). Then, ν(σ) is a c.e. semimeasure. Let ξ be an optimal c.e.
semimeasure such that KA = − log ξ. Then, there exists c0 ∈ ω such that
µ(Vσ) = ν(σ) ≤ c0ξ(σ) for all σ ∈ 2<ω.

Suppose there exists c1 ∈ ω such that K(X ↾ n) < KA(X ↾ n) + c1 for
infinitely many n ∈ ω. Then,

µ(VX↾n) < c02
c1−K(X↾n)

for infinitely many n.
Let U be the universal prefix-free machine to define K. Consider the set

W =
⋃

τ∈dom(U)

V̂U(τ)

where V̂U(τ) is VU(τ) enumerated as long as µ(VU(τ)) < c02
c1−|τ |. The weight

of the set W is bounded by∑
τ∈dom(U)

µ(V̂U(τ)) ≤
∑

τ∈dom(U)

c02
c1−|τ | < ∞.
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Thus, W is a Solovay test, as its total weight is bounded.
We claim that Y ∈ [τ ] for infinitely many τ ∈ W . By the assumption,

there are infinitely many σ ≺ X such that Y ∈ Vσ, µ(Vσ) < c02
c1−K(σ).

Thus, there are infinitely many τ ∈ dom(U) such that Y ∈ V̂U(τ) = VU(τ).
This argument implies that Y is not ML-random, a contradiction.

Remark 4.4. We note that

KA(0n1) = K(0n) +O(1).

This fact can be shown analogously to its monotone complexity version
[5, Proposition 3.15.3]. Thus, a stronger version of the theorem, KA(σ) −
K(σ) → ∞ as |σ| → ∞, does not hold.

4.2. (III) implies (IV)

We show that (III)K-f -complexity implies (IV) f -ML-randomness. Hudel-
son [3, Theorem 4.1.6] has shown the equivalence between (III) and (IV) for
a computable function f . The implication from (III) to (IV) can also be
shown for an upper semicomputable f , more or less using the same proof. A
counterexample to the converse will be given in a later section.

Proposition 4.5. Let f : 2<ω → [0,∞] be an upper semicomputable func-
tion. Then, K-f -complexity implies f -ML-randomness.

Proof. Let (An)n be a sequence of uniformly c.e. sets such that dwtf (An) ≤
2−n and X ∈ [An] for all n ∈ ω. To use the KC theorem, we construct a
KC-set S as follows. For each n, each σ ∈ A2n, and each k ∈ ω such that
k > f(σ) − n, we computably enumerate (σ, k) into S. Since An is c.e. and
f is upper semicomputable, this is possible. Then, the weight of S is∑

(σ,k)

2−k =
∑
n

∑
σ∈A2n

∑
k>f(σ)−n

2−k <
∑
n

∑
σ∈A2n

2−f(σ)+n+1

=
∑
n

2n+1dwtf (A2n) ≤
∑
n

2−n+1 < ∞.

By the KC theorem, we have K(σ) ≤ f(σ)− n+O(1) for all σ ∈ A2n. Since
X ∈ [An] for all n ∈ ω, X is not K-f -complex.

The proof of the converse for an upper semicomputable function f fails.
This is because {σ : K(σ) < f(σ)− n} need not be a c.e. set.
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5. Counterexamples to the reverse implications

5.1. Counterexample to the implication from (IV) to (III)

In this section, we show that the reverse implication from (IV) f -ML-
randomness to (III) K-f -complexity does not hold.

Theorem 5.1. There exist a c.e. semimeasure ν and a sequence X ∈ 2ω

such that X is f -ML-random but not K-f -complex where f = − log ν.

Proof. We construct such a c.e. semimeasure ν and a sequence X using a
finite-injury argument.

Let (U e
k)k be the e-th sequence of c.e. sets of 2<ω. To ensure that X is

f -ML-random, if ν(U e
k) ≤ 2−k for all k ∈ ω, we need to ensure X ̸∈

⋂
k U

e
k .

We set the requirement

Qe : (∃k)X ∈ U e
k =⇒ ν(U e

k) > 2−k.

If (U e
k)k is a ν-ML-random test and the requirement Qe is met, then X ̸∈ U e

k

for the witness of Qe and X passes the test (U e
k)k. Thus, if all requirements

Qe are met, then X is ν-ML-random.
We also set the requirement

Re : (∃n)K(X ↾ n) < − log ν(X ↾ n)− e+ c,

where c ∈ ω will be defined later. If all requirements Re are met, then X is
not K-f -complex.

We set their priorities as follows:

Q0 > R0 > Q1 > R1 > · · · .

Each requirement forces a corresponding string as follows:

σ0 ≺ τ0 ≺ σ1 ≺ τ1 · · · ≺ X.

We define τ−1 as the empty string for convenience.
The strategy to satisfy Qe is as follows. Choose a sufficiently large k ∈ ω.

Then, consider the following Π0
1-relation: [τe−1] ∩ U e

k = ∅. If this is true, we
define σe as an extension of τe−1. Otherwise, pick a string σe ∈ 2<ω such that
τe−1 ≺ σe, [σe] ⊆ U e

k with some additional conditions. Then we define ν(σe)
so that ν(σe) > 2−k. Since the relation is not decidable, the requirement Qe

may cause an injury.
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The strategy to satisfy Re is as follows. Pick τe ≻ σe such that K(τe)
is sufficiently small and ensure ν(τe) remains small. This strategy does not
need an injury.

We can modify σe, τe, as long as it is done in a computable manner. We
denote σe, τe at stage s by σe,s, τe,s. Thus, the sequence X ∈ 2ω will be in
∆0

2.
We must ensure the function ν is a c.e. semimeasure. Therefore, we can

only approximate ν(ρ) from below. We denote the approximation of ν(ρ) at
stage s by νs(ρ). Let

Ws = {σe,t : t ≤ s} ∪ {τe,t : t ≤ s}.

At each stage s, we only consider ν on Ws as ν can be extended to all strings
in a computable manner. If ρ ∈ 2<ω is not a prefix of each string in Ws, then
νs(ρ) at stage s is 0. To ensure that we can always select such a string, we
impose the following conditions at each stage s:

[τe−1] ⊊
⋃
ρ

{[ρ] : τe−1 ≺ ρ ∈ Ws}, (1)

[σe] ⊊
⋃
ρ

{[ρ] : σe ≺ ρ ∈ Ws} (2)

Construction.
We define strings σ0, τ0, σ1, τ1, · · · one by one. Each requirement Qe or

Re is associated with k, n respectively.
At stage s, assuming that no injury occurs, pick the smallest index e such

that σe is undefined. We define σe, τe at stage s (or σe,s, τe,s) and σi, τi for
i > e continue to be undefined.

The construction of σe is as follows. Pick k ∈ ω such that

2−s−2νs(τe−1) > 2−k.

Since k > s, U e
k,s is the empty set by the usual convention where U e

k,s is the
clopen approximation of U e

k at stage s. Then, pick any string σe such that

• τe−1 ≺ σe,

• σe is neither a prefix of any string in Ws−1 nor an element of Ws−1.
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We also impose the condition (1) by extending if necessary. We also define

νs(σe) = 2−s−2νs−1(τe−1) (3)

and νs(ρ) = νs−1(ρ) for each ρ ∈ Ws−1. In this case, Qe is associated with k.
The construction of τe is as follows. Pick τe ∈ 2<ω such that

• σe ≺ τe,

• τe is neither a prefix of any string in Ws−1 nor an element in Ws−1.

We also impose the condition (2) by extending if necessary. Then, we define

νs(τe) = min{2−s−1ν(σe), 2
−2|τ |−e}

and νs(ρ) = νs−1(ρ) for each ρ ∈ Ws−1. In this case, Re is associated with
n = |τe|.

Suppose that σe is defined and Qe is associated with k. The requirement
Qe requires attention at stage s if [τe−1] ∩ U e

k,s ̸= ∅. If so, we say that Qe

causes an injury.
Let Qe be the requirement requiring attention at stage s with the highest

priority. We define σe, τe at stage s and reset σi, τi for i > e to be undefined.
In this case, the construction of σe = σe,s is as follows. Among the strings

σe,s−1, τe,s−1, σe+1,s−1, τe+1,s−1, · · ·

let ρ be the shortest one defined and satisfying [ρ] ⊆ U e
k,s. Then, define

σe ∈ 2<ω such that

• ρ ≺ σe,

• [σe] ⊆ U e
k,s.

• σe is neither a prefix of any string in Ws−1 nor an element in Ws−1.

Again, we impose the condition (1). We define

νs(σe) = νs−1(σe,s−1). (4)

The construction of τe is the same as above.
Finally, let X ∈ 2ω be the unique one such that σe, τe ≺ X for all e. This

is the end of the construction.
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Verification.
We claim that this construction is possible. In particular, one can find

such σe, τe at each stage s. This is because of condition (1) and (2) and by
induction.

Each requirement requires attention at most once after all requirements
with higher priorities settle their strings. Thus, by induction, all strings σe, τe
will be settled eventually.

For each index e, if the requirement Qe does not require attention after
all requirements with higher priority settle down, then X ̸∈ U e

k where k is
the associated integer of Qe, and hence Qe is met. If the requirement Qe

requires attention, then

ν(U e
k) ≥ ν(σe) = 2−s−2ν(τe−1)[s] > 2−k,

where s is the stage at which k is defined. Thus, Qe is met.
For the requirement Re,

K(τe) ≤ 2|τe|+ c ≤ − log ν(τe)− e+ c,

and τe ≺ X. Here, we define c ∈ ω so that the inequality above holds for all
strings. Thus, Re is met.

We show that ν is a c.e. semimeasure. When updating ν at stage s, we
always define a new string that is not a prefix of any string in Ws−1. Thus,
ν increases from 0.

For each τe−1,s, by equation (3) and (4), we have∑
ρ

{ν(ρ) : τe−1 ≺ ρ ∈ Ws} ≤ ν(τe−1).

The corresponding inequality also holds for each σe,s. Thus, ν can be com-
putably extended as a semimeasure.

5.2. Counterexample to the Implication from (III) to (II)

In this section, we show that the reverse implication from (III) K-f -
complexity to (II) strong K-f -complexity does not hold.

Theorem 5.2. There exists a c.e. semimeasure ν such that the sequence 0ω

is K-f -complex but not strongly K-f -complex, where f = − log ν.

Here, 0ω refers to the infinite binary sequence consisting of all zeros. In
the below, 0n denotes a finite binary string consisting of n zeros.
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Proof. We define ν as follows. For any string σ that is not of the form 0n,
set ν(σ) = 0. For strings of the form 0n, define ν(0n) by

− log ν(0n) = min
m≥n

K(0m).

Since the right-hand side is non-decreasing in n, ν is a semimeasure. More-
over, because the right-hand side is upper semicomputable, ν is lower semi-
computable.

Since minm≥nK(0m) ≤ K(0n) for all n, the sequence 0ω is K-f -complex.
However, because minm≥n K(0m) = K(0n) for infinitely many n, 0ω is not
strongly K-f -complex.

5.3. Counterexample to the Implication from (II) to (I)

In this section, we show that the reverse implication from (II) strong
K-f -complexity to (I) KA-f -complexity does not hold.

Theorem 5.3. There exists a c.e. semimeasure ν such that the sequence 0ω

is strongly K-f -complex but not KA-f -complex, where f = − log ν.

Proof. The construction of ν is similar to that used in Theorem 5.2. For any
string σ that is not of the form 0n, set ν(σ) = 0. For strings of the form 0n,
define ν(0n) by

− log ν(0n) =
1

2
min
m≥n

K(0m).

Then, ν is a c.e. semimeasure.
Since KA(0n) = O(1) and K(0n) → ∞, f(0n) → ∞ and the sequence 0ω

is not KA-f -complex. We also have

K(0n)− f(0n) ≥ 1

2
min
m≥n

K(0m) → ∞,

which means that the sequence 0ω is strongly K-f -complex.

6. Randomness preservation and no-randomness-from-nothing prin-
ciples

6.1. Randomness preservation

By MLR, we denote the set of all ML-random sequences in 2ω with re-
spect to the uniform measure. Bienvenu et al. [1, Theorem 5.4] showed that
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the randomness preservation property holds for µ-ML-randomness (Theo-
rem 2.9). Thus, the image of ML-random sequences is contained in ML-
randomness w.r.t. the induced measure. We show that this result can be
extended to (II) strong K-f -complexity but not (I) KA-f -complexity.

Theorem 6.1. Let Φ be a Turing functional and Y ∈ MLR∩dom(Φ). Then,
X = Φ(Y ) is strongly K-f -complex, where ν is the induced measure of Φ from
the uniform measure µ and f = − log ν.

Building upon the proof technique used in Theorem 4.1, we give a proof
of this result.

Proof. We define Vσ = {Y : σ ⪯ ΦY }. Suppose there exists c1 ∈ ω such
that K(X ↾ n) < f(X ↾ n) + c1 for infinitely many n ∈ ω. Then,

µ(VX↾n) = ν(X ↾ n) < 2c1−K(X↾n)

for infinitely many n.
Let U be the universal prefix-free machine to define K. Consider the set

W =
⋃

τ∈dom(U)

V̂U(τ)

where V̂U(τ) is VU(τ) enumerated as long as µ(VU(τ)) < 2c1−|τ |. The weight of
the set W is bounded by∑

τ∈dom(U)

µ(V̂U(τ)) ≤
∑

τ∈dom(U)

2c1−|τ | < ∞.

Thus, W is a Solovay test.
We claim that Y ∈ [τ ] for infinitely many τ ∈ W . By the assumption,

there are infinitely many σ ≺ X such that Y ∈ Vσ, µ(Vσ) < 2c1−K(σ). Thus,

there are infinitely many τ ∈ dom(U) such that Y ∈ V̂U(τ) = VU(τ).
This argument implies that Y is not ML-random, a contradiction.

Theorem 6.2. There exists a Turing functional Φ :⊆ 2ω → 2ω and an ML-
random sequence X ∈ 2ω such that Y = Φ(X) ↓ is not KA-f -complex, where
ν is the induced measure of Φ from the uniform measure λ and f = − log ν.
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Proof. Let Φ be the Turing functional defined in [1, Theorem 4.1]. Then,
dom(Φ) = {Ω}, Φ(Ω) = 0ω. Furthermore, ν(0n) = 2−n · tn where tn is the
number of possible Ωs ↾ n. Figueira et al. [18, Fact 2] showed that tn =
o(2n). Thus, f(0n) = − log ν(0n) → ∞ as n → ∞. Since 0ω is computable,
KA(0n) = O(1). Hence, the sequence 0ω is not KA-f -complex.

The example in the proof is interesting and we will look at it in more
detail.

Let Ω be a left-c.e. ML-random real and fix a computable approximation
Ωs from below. We define a Turing functional Φ by (Ωs ↾ n, 0n) ∈ Φ for each
s and n. Then, dom(Φ) = {Ω}, Φ(Ω) = 0ω. Let ν be the induced measure
of Φ from the uniform measure λ and let f = − log ν.

We show that no sequences are KA-f -complex. Since the number tn of
Ωs ↾ n is o(2n), ν(0n) → 0 and f(0n) → ∞ as n → ∞. Thus, 0ω is not a
KA-f -complex sequence. Let X ∈ 2ω be such that X ̸= 0ω. Then, there
exists n ∈ ω such that ν(X ↾ m) = 0 and f(X ↾ m) = ∞ for each m ≥ n.
Hence, X is not KA-f -complex.

The sequence 0ω is the unique sequence that is strongly K-f -complex.
Note that 0ω is strongly K-f -complex by randomness preservation. Thus,
the convergence speed of tn is very slow in the sense that

K(n)− log tn → ∞ (n → ∞).

Other sequences are not strongly K-f -complex for the same reason as above.

6.2. No-randomness-from-nothing

The No-randomness-from-nothing principle for a c.e. semimeasure does
not generally hold, as shown in Bienvenu et al. [1, Theorem 4.1]. Barmpalias
and Shen [2, Proposition 4] recently showed no-randomness-from-nothing for
(I) KA-f -complex sequences with oracle use bound 2n+O(1) (Theorem 2.10).
Even with stricter bound of oracle use, this result cannot be extended to (II)
strong K-f -complexity.

Theorem 6.3. There exists a Turing functional Φ with use bound n+O(1)
and a sequence Y ∈ 2ω such that

• Y is strongly K-f -complex,

• Y ̸= Φ(X) for each X ∈ MLR ∩ dom(Φ),
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where ν is the induced measure of Φ from the uniform measure and f =
− log ν.

The proof is based on Theorem 5.3 and Bienvenu et al. [1, Theorem 4.1].

Proof. We use the c.e. semimeasure ν as Theorem 5.3. For any string σ that
is not of the form 0n, set ν(σ) = 0. For strings of the form 0n, define ν(0n)
by

− log ν(0n) =
1

2
min
m≥n

K(0m).

We construct a Turing functional Φ such that ν is the induced measure of Φ
as follows: For each n ∈ ω, we list all pairs (σ, 0n) ∈ Φ where σ is a binary
string of length n, in lexicographic order. The total number of such pairs is
2n−f(0n). Note that ν is the induced measure of Φ.

As shown in Theorem 5.3, Y = 0ω is strongly K-f -complex. Since
f(0n) → ∞ as n → ∞, we have dom(Φ) = {0ω} by the same argument
of Bienvenu et al. [1, Theorem 4.1]. Hence, Y has no ML-random sequence
in the preimage of Φ.
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