Reducibilities relating to Schnorr randomness

履歴
2014年9月22日 受理
2014年3月24日 投稿

タイトル
Reducibilities relating to Schnorr randomness

種類
正論文

雑誌
Theory of Computing Systems, 58(3), 441-462, 2016.
DOI: 10.1007/s00224-014-9583-3

Abstract
Some measures of randomness have been introduced for Martin- L ̈of randomness such as K-reducibility, C-reducibility and vL-reducibility. In this paper we study Schnorr-randomness versions of these reducibilities. In particular, we characterize the computably-traceable reducibility via relative Schnorr randomness, which was asked in Nies’ book (Problem 8.4.22). We also show that Schnorr reducibility implies uniform-Schnorr-randomness version of vL-reducibility, which is the Schnorr-randomness version of the result that K-reducibility implies vL-reducibility.

ダウンロード
プレプリント

Unified Characterizations of Lowness Properties via Kolmogorov Complexity

履歴
2014年1月19日投稿
2015年3月24日出版確認

タイトル
Unified Characterizations of Lowness Properties via Kolmogorov Complexity
(with T. Kihara)

種類
正論文

国際会議と雑誌
Archive for Mathematical Logic: Volume 54, Issue 3 (2015), Page 329-358
DOI: 10.1007/s00153-014-0413-8

Abstract
Consider a randomness notion $\mathcal C$.
A uniform test in the sense of $\mathcal C$ is a total computable procedure that each oracle $X$ produces a test relative to $X$ in the sense of $\mathcal C$.
We say that a binary sequence $Y$ is $\mathcal C$-random uniformly relative to $X$ if $Y$ passes all uniform $\mathcal C$ tests relative to $X$.

Suppose now we have a pair of randomness notions $\mathcal C$ and $\mathcal D$ where $\mathcal{C}\subseteq \mathcal{D}$, for instance Martin-L\”of randomness and Schnorr randomness. Several authors have characterized classes of the form Low($\mathcal C, \mathcal D$) which consist of the oracles $X$ that are so feeble that $\mathcal C \subseteq \mathcal D^X$. Our goal is to do the same when the randomness notion $\mathcal D$ is relativized uniformly: denote by Low$^\star$($\mathcal C, \mathcal D$) the class of oracles $X$ such that every $\mathcal C$-random is uniformly $\mathcal D$-random relative to $X$.

(1) We show that $X\in{\rm Low}^\star({\rm MLR},{\rm SR})$ if and only if $X$ is c.e.~tt-traceable if and only if $X$ is anticomplex if and only if $X$ is Martin-L\”of packing measure zero with respect to all computable dimension functions.

(2) We also show that $X\in{\rm Low}^\star({\rm SR},{\rm WR})$ if and only if $X$ is computably i.o.~tt-traceable if and only if $X$ is not totally complex if and only if $X$ is Schnorr Hausdorff measure zero with respect to all computable dimension functions.

ダウンロード
プレプリント

Derandomization in Game-Theoretic Probability

履歴
2014年9月27日 Online
2014年8月3日 受理
2014年2月12日 投稿

タイトル
Derandomization in Game-Theoretic Probability
(with A. Takemura)

種類
正論文

国際会議と雑誌
Stochastic Processes and their Applications 125, 39-59, 2015

Abstract
We give a general method for constructing a deterministic strategy
of Reality from a randomized strategy in game-theoretic probability.
The construction can be seen as derandomization in game-theoretic probability.

ダウンロード
プレプリント