Unified Characterizations of Lowness Properties via Kolmogorov Complexity

履歴
2014年1月19日投稿
2015年3月24日出版確認

タイトル
Unified Characterizations of Lowness Properties via Kolmogorov Complexity
(with T. Kihara)

種類
正論文

国際会議と雑誌
Archive for Mathematical Logic: Volume 54, Issue 3 (2015), Page 329-358
DOI: 10.1007/s00153-014-0413-8

Abstract
Consider a randomness notion $\mathcal C$.
A uniform test in the sense of $\mathcal C$ is a total computable procedure that each oracle $X$ produces a test relative to $X$ in the sense of $\mathcal C$.
We say that a binary sequence $Y$ is $\mathcal C$-random uniformly relative to $X$ if $Y$ passes all uniform $\mathcal C$ tests relative to $X$.

Suppose now we have a pair of randomness notions $\mathcal C$ and $\mathcal D$ where $\mathcal{C}\subseteq \mathcal{D}$, for instance Martin-L\”of randomness and Schnorr randomness. Several authors have characterized classes of the form Low($\mathcal C, \mathcal D$) which consist of the oracles $X$ that are so feeble that $\mathcal C \subseteq \mathcal D^X$. Our goal is to do the same when the randomness notion $\mathcal D$ is relativized uniformly: denote by Low$^\star$($\mathcal C, \mathcal D$) the class of oracles $X$ such that every $\mathcal C$-random is uniformly $\mathcal D$-random relative to $X$.

(1) We show that $X\in{\rm Low}^\star({\rm MLR},{\rm SR})$ if and only if $X$ is c.e.~tt-traceable if and only if $X$ is anticomplex if and only if $X$ is Martin-L\”of packing measure zero with respect to all computable dimension functions.

(2) We also show that $X\in{\rm Low}^\star({\rm SR},{\rm WR})$ if and only if $X$ is computably i.o.~tt-traceable if and only if $X$ is not totally complex if and only if $X$ is Schnorr Hausdorff measure zero with respect to all computable dimension functions.

ダウンロード
プレプリント

Derandomization in Game-Theoretic Probability

履歴
2014年9月27日 Online
2014年8月3日 受理
2014年2月12日 投稿

タイトル
Derandomization in Game-Theoretic Probability
(with A. Takemura)

種類
正論文

国際会議と雑誌
Stochastic Processes and their Applications 125, 39-59, 2015

Abstract
We give a general method for constructing a deterministic strategy
of Reality from a randomized strategy in game-theoretic probability.
The construction can be seen as derandomization in game-theoretic probability.

ダウンロード
プレプリント

Algorithmic randomness over general spaces

履歴
2014年5月出版
2013年12月受理
2012年5月改訂版を準備中
2011年9月改訂版を投稿
2010年5月25日ジャーナルに投稿中

タイトル
Algorithmic randomness over general spaces

種類
論文

ジャーナル
Math. Log. Quart. 60, No. 3, 184–204 (2014)
DOI 10.1002/malq.201200051

ダウンロード
プレプリント

$L^1$-computability, layerwise computability and Solovay reducibility

履歴
2013年7月17日出版
2013年3月27日受理
2012年9月19日投稿

タイトル
L1-computability, layerwise computability and Solovay reducibility

種類
正論文

国際会議と雑誌
Computability, 2:15-29, 2013.

Abstract
The class of the differences between two integral tests for Schnorr ran- domness is an important class related to Schnorr randomness. In this paper we study other randomness versions. We also claim that Solovay reducibility for lower semicomputable functions generalizes layerwise com- putability.

ダウンロード
プレプリント