履歴
2024年12月31日ページ作成
タイトル
実数の計算可能性
種類
総説論文
ジャーナル
数理解析研究所講究録
RIMS共同研究(公開型)証明論と証明活動2293
ダウンロード
講究録のページ
宮部賢志(ミヤベケンシ)
履歴
2024年12月26日ページ作成
タイトル
Real closed fields via strong Solovay reducibility
Masahiro Kumabe, Kenshi Miyabe, and Toshio Suzuki
種類
研究論文
ジャーナル
雑誌に投稿し査読中
ダウンロード
preprint
履歴
2024年11月4日ページ作成
タイトル
汎用的学習理論
種類
総説論文
ジャーナル
数理解析研究所講究録
RIMS共同研究(公開型)証明論と証明活動
2228 証明と計算の理論と応用
ダウンロード
京都大学リポジトリからダウンロード
履歴
2023年11月7日:投稿
タイトル
Solovay reducibility via Lipschitz functions and signed-digit representation
Masahiro Kumabe, Kenshi Miyabe, and Toshio Suzuki
種類
研究論文
出版情報
TBA
要旨
We explore Solovay reducibility in the context of computably approximable reals, extending its natural characterization for left-c.e. reals via computable Lipschitz functions. Our paper offers two distinct characterizations: the first employs Lipschitz functions, while the second utilizes Turing reductions with bounded use with respect to signed-digit representation. Additionally, we examine multiple related reducibilities and establish separations among them. These results contribute to a refined perspective of the relationship between Solovay reducibility and computable Lipschitz functions.
履歴
2021年2月 アクセプト
2022年6月 出版
タイトル
Rational sequences converging to left-c.e. reals of positive effective Hausdorff dimension
Hiroyuki Imai, Masahiro Kumabe, Kenshi Miyabe, Yuki Mizusawa, Toshio Suzuki
種類
査読ありの事後会議録
国際会議と雑誌
Computability Theory and Foundations of Mathematics
Proceedings of the 9th International Conference on Computability Theory and Foundations of Mathematics
The 9th International Conference on Computability Theory and Foundations of Mathematics, Wuhan, China, 21 – 27 March 2019
https://doi.org/10.1142/12917 | June 2022
Pages: 196
Edited By: NingNing Peng (Wuhan University of Technology, China), Kazuyuki Tanaka (Tohoku University, Japan), Yue Yang (National University of Singapore, Singapore), Guohua Wu (Nanyang Technological University, Singapore) and Liang Yu (Nanjing University, China)
要約
In our previous work, we characterized Solovay reducibility using Lipschitz condition,
and introduced quasi Solovay reducibility (qS-reducibility, for short) as a H ̈older condition counterpart.
In this paper, we investigate effective dimensions and ideals closely related to quasi Solovay reducibility by means of the rate of convergence.
We show that the qS-completeness among left-c.e. reals is equivalent to having a positive effective Hausdorff dimension.
The Solovay degrees of qS-complete left-c.e. reals form a filter. On the other hand, the Solovay degrees of non-qS-complete left-c.e. reals do not form an ideal.
Based on observations on the relationships between rational sequences and reducibility, we introduce a stronger version of qS-reducibility.
Given a degree of this reducibility, the lower cone (including the given degree) forms an ideal.
By developing these investigations, we characterize the effective dimensions by means of the rate of convergence.
We give a variation of the first incompleteness theorem based on Solovay reducibility.
ダウンロード
東京都立大学機関リポジトリで論文を読む