履歴
タイトル
Subclasses of the weakly computable reals
種類
Tokyo model theory seminar
2022年10月26日
ダウンロード
宮部賢志(ミヤベケンシ)
履歴
2021年2月 アクセプト
2022年6月 出版
タイトル
Rational sequences converging to left-c.e. reals of positive effective Hausdorff dimension
Hiroyuki Imai, Masahiro Kumabe, Kenshi Miyabe, Yuki Mizusawa, Toshio Suzuki
種類
査読ありの事後会議録
国際会議と雑誌
Computability Theory and Foundations of Mathematics
Proceedings of the 9th International Conference on Computability Theory and Foundations of Mathematics
The 9th International Conference on Computability Theory and Foundations of Mathematics, Wuhan, China, 21 – 27 March 2019
https://doi.org/10.1142/12917 | June 2022
Pages: 196
Edited By: NingNing Peng (Wuhan University of Technology, China), Kazuyuki Tanaka (Tohoku University, Japan), Yue Yang (National University of Singapore, Singapore), Guohua Wu (Nanyang Technological University, Singapore) and Liang Yu (Nanjing University, China)
要約
In our previous work, we characterized Solovay reducibility using Lipschitz condition,
and introduced quasi Solovay reducibility (qS-reducibility, for short) as a H ̈older condition counterpart.
In this paper, we investigate effective dimensions and ideals closely related to quasi Solovay reducibility by means of the rate of convergence.
We show that the qS-completeness among left-c.e. reals is equivalent to having a positive effective Hausdorff dimension.
The Solovay degrees of qS-complete left-c.e. reals form a filter. On the other hand, the Solovay degrees of non-qS-complete left-c.e. reals do not form an ideal.
Based on observations on the relationships between rational sequences and reducibility, we introduce a stronger version of qS-reducibility.
Given a degree of this reducibility, the lower cone (including the given degree) forms an ideal.
By developing these investigations, we characterize the effective dimensions by means of the rate of convergence.
We give a variation of the first incompleteness theorem based on Solovay reducibility.
ダウンロード
東京都立大学機関リポジトリで論文を読む
履歴
2022年6月9日 スライドアップロード
タイトル
弱計算可能実数の部分族
種類
International conference on computability, complexity and randomness 2022
ダウンロード
CCR