Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for self-normalized martingales: a game-theoretic approach

News
May 4, 2018. Accepted by AOP

Title
Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for self-normalized martingales: a game-theoretic approach
(with T. Sasai and A. Takemura)

Type
Full paper

Journal
Annals of Probability,
Annals of Probability, Vol. 47, No. 2, 1136-1161, March 2019.

Abstract
We prove an Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for self-normalized martingales. Our proof is given in the framework of the game-theoretic probability of Shafer and Vovk. As many other game-theoretic proofs, our proof is self-contained and explicit.

download
arXiv

Muchnik degrees and Medvedev degrees of the randomness notions

News
Sep 2018, accepted
11 Mar 2018, submitted to a Journal

Title
Muchnik degrees and Medvedev degrees of the randomness notions

Type
Research paper

Publication
The joint proceedings for ALC2015 and ALC2017 published via World Scientific


Proceedings of the 14th and 15th Asian Logic Conferences, pp. 108-128 (2019) January

Abstract
The main theme of this paper is computational power when a machine is allowed to access random sets.
The computability depends on the randomness notions and we compare them by Muchnik and Medvedev degrees.
The central question is whether, given an random oracle, one can compute a more random set.
The main result is that, for each Turing functional,
there exists a Schnorr random set whose output is not computably random.

download
Muchnikdegrees